Extractive multi-document text summarization – a summarization with the aim of removing redundant information in a document collection while preserving its salient sentences – has recently enjoyed a large interest in proposing automatic models. This paper proposes an extractive multi-document text summarization model based on genetic algorithm (GA). First, the problem is modeled as a discrete optimization problem and a specific fitness function is designed to effectively cope with the proposed model. Then, a binary-encoded representation together with a heuristic mutation and a local repair operators are proposed to characterize the adopted GA. Experiments are applied to ten topics from Document Understanding Conference DUC2002 datasets (d061j through d070f). Results clarify the effectiveness of the proposed model when compared with another state-of-the-art model.
Sixteen water samples were collected from the operation units of the Al-Quds
power plant, north Baghdad city and the surrounding trocars, surface and
groundwater, and analyzed to assess the resulting pollution. The samples were
analyzed for heavy metals (As, Cd, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, U and Zn) by
using inductively coupled plasma- mass spectrometry (ICP-MS). The results were
compared with local and international and standard limits. Heavy metals analysis of
the water samples shows that water of operation units and trocars have mean
concentrations of As, Cd, Cr, Cu, Mo, Pb, Sb, Se, U and Zn were within or lower
than the national and world limits, while Mn and Ni were higher than these limits.
Concentrat
The present article discusses innovative word-formation processes in Internet texts, the emergence of new derivative words, new affixes, word-formation models, and word-formation methods. Using several neologisms as an example, the article shows both the possibilities of Internet word-making process and the possibilities of studying a newly established work through Internet communication. The words selected for analysis can be attributed to the keywords of the current time. (In particular, the words included in the list of "Words of 2019") there are number of words formed by the suffix method, which is the traditional method of the Russian word formation. A negation of these words is usually made thro
... Show MoreSome maps of the chaotic firefly algorithm were selected to select variables for data on blood diseases and blood vessels obtained from Nasiriyah General Hospital where the data were tested and tracking the distribution of Gamma and it was concluded that a Chebyshevmap method is more efficient than a Sinusoidal map method through mean square error criterion.
In this paper, we used four classification methods to classify objects and compareamong these methods, these are K Nearest Neighbor's (KNN), Stochastic Gradient Descentlearning (SGD), Logistic Regression Algorithm(LR), and Multi-Layer Perceptron (MLP). Weused MCOCO dataset for classification and detection the objects, these dataset image wererandomly divided into training and testing datasets at a ratio of 7:3, respectively. In randomlyselect training and testing dataset images, converted the color images to the gray level, thenenhancement these gray images using the histogram equalization method, resize (20 x 20) fordataset image. Principal component analysis (PCA) was used for feature extraction, andfinally apply four classification metho
... Show More