In this paper, the nonclassical approach to dynamic programming for the optimal control problem via strongly continuous semigroup has been presented. The dual value function VD ( .,. ) of the problem is defined and characterized. We find that it satisfied the dual dynamic programming principle and dual Hamilton Jacobi –Bellman equation. Also, some properties of VD (. , .) have been studied, such as, various kinds of continuities and boundedness, these properties used to give a sufficient condition for optimality. A suitable verification theorem to find a dual optimal feedback control has been proved. Finally gives an example which illustrates the value of the theorem which deals with the sufficient condition for optimality.
Restoration is the main process in many applications. Restoring an original image from a damaged image is the foundation of the restoring operation, either blind or non-blind. One of the main challenges in the restoration process is to estimate the degradation parameters. The degradation parameters include Blurring Function (Point Spread Function, PSF) and Noise Function. The most common causes of image degradation are errors in transmission channels, defects in the optical system, inhomogeneous medium, relative motion between object and camera, etc. In our research, a novel algorithm was adopted based on Circular Hough Transform used to estimate the width (radius, sigma) of the Point Spread Function. This algorithm is based o
... Show MoreThe goal of this paper is to study dynamic behavior of a sporadic model (prey-predator). All fixed points of the model are found. We set the conditions that required to investigate the local stability of all fixed points. The model is extended to an optimal control model. The Pontryagin's maximum principle is used to achieve the optimal solutions. Finally, numerical simulations have been applied to confirm the theoretical results.
Face Detection by skin color in the field of computer vision is a difficult challenge. Detection of human skin focuses on the identification of pixels and skin-colored areas of a given picture. Since skin colors are invariant in orientation and size and rapid to process, they are used in the identification of human skin. In addition features like ethnicity, sensor, optics and lighting conditions that are different are sensitive factors for the relationship between surface colors and lighting (an issue that is strongly related to color stability). This paper presents a new technique for face detection based on human skin. Three methods of Probability Density Function (PDF) were applied to detect the face by skin color; these ar
... Show MoreThis paper presents a new numerical method for the solution of ordinary differential equations (ODE). The linear second-order equations considered herein are solved using operational matrices of Wang-Ball Polynomials. By the improvement of the operational matrix, the singularity of the ODE is removed, hence ensuring that a solution is obtained. In order to show the employability of the method, several problems were considered. The results indicate that the method is suitable to obtain accurate solutions.
This paper concentrates on employing the -difference equations approach to prove another generating function, extended generating function, Rogers formula and Mehler’s formula for the polynomials , as well as thegenerating functions of Srivastava-Agarwal type. Furthermore, we establish links between the homogeneous -difference equations and transformation formulas.
This paper describes DC motor speed control based on optimal Linear Quadratic Regulator (LQR) technique. Controller's objective is to maintain the speed of rotation of the motor shaft with a particular step response.The controller is modeled in MATLAB environment, the simulation results show that the proposed controller gives better performance and less settling time when compared with the traditional PID controller.
In this paper, the classical continuous triple optimal control problem (CCTOCP) for the triple nonlinear parabolic boundary value problem (TNLPBVP) with state vector constraints (SVCs) is studied. The solvability theorem for the classical continuous triple optimal control vector CCTOCV with the SVCs is stated and proved. This is done under suitable conditions. The mathematical formulation of the adjoint triple boundary value problem (ATHBVP) associated with TNLPBVP is discovered. The Fréchet derivative of the Hamiltonian" is derived. Under suitable conditions, theorems of necessary and sufficient conditions for the optimality of the TNLPBVP with the SVCs are stated and proved.
The Korteweg-de Vries equation plays an important role in fluid physics and applied mathematics. This equation is a fundamental within study of shallow water waves. Since these equations arise in many applications and physical phenomena, it is officially showed that this equation has solitary waves as solutions, The Korteweg-de Vries equation is utilized to characterize a long waves travelling in channels. The goal of this paper is to construct the new effective frequent relation to resolve these problems where the semi analytic iterative technique presents new enforcement to solve Korteweg-de Vries equations. The distinctive feature of this method is, it can be utilized to get approximate solutions for travelling waves of
... Show MoreThe Korteweg-de Vries equation plays an important role in fluid physics and applied mathematics. This equation is a fundamental within study of shallow water waves. Since these equations arise in many applications and physical phenomena, it is officially showed that this equation has solitary waves as solutions, The Korteweg-de Vries equation is utilized to characterize a long waves travelling in channels. The goal of this paper is to construct the new effective frequent relation to resolve these problems where the semi analytic iterative technique presents new enforcement to solve Korteweg-de Vries equations. The distinctive feature of this method is, it can be utilized to get approximate solution
... Show MoreThe gas material balance equation (MBE) has been widely used as a practical as well as a simple tool to estimate gas initially in place (GIIP), and the ultimate recovery (UR) factor of a gas reservoir. The classical form of the gas material balance equation is developed by considering the reservoir as a simple tank model, in which the relationship between the pressure/gas compressibility factor (p/z) and cumulative gas production (Gp) is generally appeared to be linear. This linear plot is usually extrapolated to estimate GIIP at zero pressure, and UR factor for a given abandonment pressure. While this assumption is reasonable to some extent for conventional reservoirs, this may incur