Let be a non-zero right module over a ring with identity. The weakly second submodules is studied in this paper. A non-zero submodule of is weakly second Submodule when , where , and is a submodule of implies either or . Some connections between these modules and other related modules are investigated and number of conclusions and characterizations are gained.
Let be a commutative ring with identity, and a fixed ideal of and be an unitary -module. In this paper we introduce and study the concept of -nearly prime submodules as genrealizations of nearly prime and we investigate some properties of this class of submodules. Also, some characterizations of -nearly prime submodules will be given.
A non-zero submodule N of M is called essential if N L for each non-zero submodule L of M. And a non-zero submodule K of M is called semi-essential if K P for each non-zero prime submodule P of M. In this paper we investigate a class of submodules that lies between essential submodules and semi-essential submodules, we call these class of submodules weak essential submodules.
Let be a ring with identity and be a submodule of a left - module . A submodule of is called - small in denoted by , in case for any submodule of , implies . Submodule of is called semi -T- small in , denoted by , provided for submodule of , implies that . We studied this concept which is a generalization of the small submodules and obtained some related results
Let R be a commutative ring with identity and let M be a unital left Rmodule.
Goodearl introduced the following concept :A submodule A of an R –
module M is an y – closed submodule of M if is nonsingular.In this paper we
introduced an y – closed injective modules andchain condition on y – closed
submodules.
Suppose that F is a reciprocal ring which has a unity and suppose that H is an F-module. We topologize La-Prim(H), the set of all primary La-submodules of H , similar to that for FPrim(F), the spectrum of fuzzy primary ideals of F, and examine the characteristics of this topological space. Particularly, we will research the relation between La-Prim(H) and La-Prim(F/ Ann(H)) and get some results.
In this paper, we introduce and study the notation of approximaitly quasi-primary submodules of a unitary left -module over a commutative ring with identity. This concept is a generalization of prime and primary submodules, where a proper submodule of an -module is called an approximaitly quasi-primary (for short App-qp) submodule of , if , for , , implies that either or , for some . Many basic properties, examples and characterizations of this concept are introduced.
Let R be an associative ring with identity and M be unital non zero R-module. A
submodule N of a module M is called a δ-small submodule of M (briefly N << M )if
N+X=M for any proper submodule X of M with M/X singular, we have
X=M .
In this work,we study the modules which satisfies the ascending chain condition
(a. c. c.) and descending chain condition (d. c. c.) on this kind of submodules .Then
we generalize this conditions into the rings , in the last section we get same results
on δ- supplement submodules and we discuss some of these results on this types of
submodules.
In this paper the concepts of weakly (resp., closure, strongly) Perfect Mappings are defined and the important relationships are studied: (a) Comparison between deferent forms of perfect mappings. (b) Relationship between compositions of deferent forms of perfect mappings. (c) Investigate relationships between deferent forms of perfect mappings and their graphs mappings.
Our purpose in this paper is to introduce new operators on Hilbert space which is called weakly normal operators. Some basic properties of these operators are studied in this research. In general, weakly normal operators need not be normal operator, -normal operators and quasi-normal operators.
The main goal of this paper is introducing and studying a new concept, which is named H-essential submodules, and we use it to construct another concept called Homessential modules. Several fundamental properties of these concepts are investigated, and other characterizations for each one of them is given. Moreover, many relationships of Homessential modules with other related concepts are studied such as Quasi-Dedekind, Uniform, Prime and Extending modules.