Hydrogen peroxide was determined by a new , accurate , sensitive and rapid method via continuous mode of FIA coupled with total luminescence measurement which include the chemiluminescence generated ,based on the oxidation of Luminol which is loaded on poly acrylic acid gel beads by hydrogen peroxide in presence of Cobalt (II) ion as a chemiluminescence catalyst and the fluorescence that was created by the insitu radiation of the released chemiluminescence light. Fluorescien molecule was used as an accepter fluorophore where it is irradiated internally and instantly by the generation of luminol chemiluminescence light as internal source for irradiation of fluorescien molecule (Fluorescence Energy Transfer (FRET) ) . It can easily give fluorescence light (i.e , no external source for irradiation is used ) at λmax =530 nm. The method is based on the absorbance of the donor molecule (Luminol) by fourteen poly acrylic acid gel beads located in specially designed cell, this cell will measure instantly the emitted light (FRET) . A sample volume of 80 μL was used throughout the whole work. Linear calibration curve extend from 0.1 - 100 μMol .L-1 , with correlation coefficient of 0.9985 and limit of detection L.O.D (S/N =3) 217.60 pg/sample using step wise dilution of the minimum concentration that was achieved by the calibration graph. Repeatability (RSD%) of less than 0.5% for six successive measurement of 50 μMol .L-1 of hydrogen peroxide. The method was applied successively in determination of hydrogen peroxide in some pharmaceutical disinfectants
The objective of this study was to establish an accurate, precise, sensitive, simple, fast and reliable method for the determination of ciprofloxacin hydrochloride in pure or in pharmaceutical dosage forms using Homemade instrument fluorimeter continuous flow injection analyser with solid state laser (405 nm) as a source. The method is based upon the fluorescence fluorescein sodium salt and its quenching by ciprofloxacin hydrochloride in aqueous medium. The solutions of standard and the sample were prepared in distilled water. The calibration graph was linear in the concentration range of using (10 - 100) mMol.L-1 ciprofloxacin hydrochloride (r= 0.9891) with relative standard deviation (RSD%) for 3 mMol.L-1 ciprofloxacin HCl solution is
... Show MoreA newly developed analytical method characterized by its speed and sensitivity for the determination of metoclopramide hydrochloride (MCP-HCl) in pure and pharmaceutical preparations via absorbance measurement by Ayah 6SX1-T-2D Solar cell-CFI Analyser. The method is based on the oxidation of the drug with Ce(IV)sulfate in acidic medium to form a red color species which determined using homemade Ayah 6SX1-T-2D Solar cell . Chemical and physical parameters were studied and optimized. The calibration graph was linear in the range of 0.05- 16 mMol.LP-1Pwith correlation coefficient r = 0.9855. The limit of detection(S/N = 3) 0.332 μg/sample from the step wise dilution for the minimum concentration in the linear dynamic ranged of the calibrat
... Show MoreHistidine was determined via measurement of total luminescence (i:e creation of chemiluminescence and insitu irradiation of released light to an acceptor fluorophore molecule to initiate fluorescence from fluorescien molecule in flat – spiral micro cell designed for this measurement . A detailed description of robust linear equation for the range of 0.002 – 0.05 mol.L-1 for a sample size of 70 µL with a correlation coefficient of 0.9879 and a coefficient of determination of 97.59% while for a quadratic model of the same concentration range was 0.9881 correlation coefficient and 97.63% coefficient of determination. Analysis of variance was conducted for both kinds of models . It indicated that their was no significa
... Show MoreNew mode for the on-line determination of oxonium ion in different strong acids using CFIA via the use of homemade linear array Ayah 5Sx4-ST- 5D solar CFI analyser
The adsorption of fexofenadine drug by activated charcoal powder impregnated with hydrogen peroxide (IAC) to improve its surface properties was investigated. The investigation also aimed to assess the effect of the repeated dose in increasing the amount of the drug adsorbed. The powder activated charcoal was impregnated with H2O2 3%. The effects of pH of the solution, concentration of the drug and time of the reaction parameters were investigated by using UV-Vis spectroscopy. The IAC was brought in contact with the drug solution in different pH (2, 4, 7 and 9), drug concentrations (30, 60, 90 and 120 µg ml-1) and time (15, 30, 45 and 60 minutes). After each experiment, a repeated dose of IAC was introd
... Show MoreCo(II) ion was determined by a new, accurate, sensitive and rapid method via a
continuous flow injection analysis (CFIA) with a chemiluminescence reaction based on
the oxidation of Luminol which is loaded on poly acrylic acid gel beads by hydrogen
peroxide in presence of Cobalt (II) ion as a chemiluminescence catalyst. Chemical and
physical parameters were investigated to obtain the best conditions. Linear dynamic
range of Cobalt (II) ion was from 0.1-20.0 μg.ml-1 with a correlation coefficient r =
0.9758, limit of detection (L.O.D) 0.2 ng/sample from the step wise dilution of lowest
concentration in the calibration graph with the percentage relative standard deviation for
3 μg.ml-1 Co(ll) solution is 0.8537% (n
This paper present a simple and sensitive method for the determination of DL-Histidine using FIA-Chemiluminometric measurement resulted from oxidation of luminol molecule by hydrogen peroxide in alkaline medium in the presence of DL-Histidine. Using 70?l. sample linear plot with a coefficient of determination 95.79% for (5-60) mmol.L-1 while for a quadratic relation C.O.D = 96.44% for (5-80) mmol.L-1 and found that guadratic plot in more representative. Limit of detection was 31.93 ?g DL-Histidine (S/N = 3), repeatability of measurement was less that 5% (n=6). Positive and negative ion interferances was removed by using minicolume containing ion exchange resin located after injection valve position.