Tensile , thermal, and barrier properties of polylactide PLA-based
nanocomposite films that were prepared by solvent casting method with
polyethylene glycol (PEG), and alumina were studied. PLA/PEG blend showed
decrease in tensile strength and Young modulus but increased in elongation in
PLA/PEG and increased in crystalline of PLA but decrease in glass transition
temperature with the increasing of PEG concentration . A nano blend composites of
PLA/PEG/alumina (50/50/4) when compared to PLA/PEG blend indicated that
tensile strength , Young modulus and glass transition temperature (Tg) increased
with adding alumina nano particles, concentration and barrier properties
improvement due to its nucleating and reinforcing function mineral when add nano
alumina to PLA/PEG blend . These results indicated that the incorporation of Al2O3
enhanced the Oxygen barrier properties of the PLA.
Volcaniclastic rocks of Al Muqdadiya Formation (Pliocene) in Injana area, southern Hemrin anticline, NE of Iraq, were studied ( petrographically, physically, mineralogically and geochemically , as well as the engineering properties) to assess the suitability of volcaniclastic rocks to use them in industry as refractories. The results show that the physical and engineering properties change with the temperature change. The bulk density and the specific gravity increase by increasing temperature while the apparent porosity, water sorption and the linear shrinkage decrease. On the other hand the compressive strength increase by increasing temperature. The volcaniclastics have very low thermal conductivi
... Show MoreIn this work, excess properties (eg excess molar volume (VE), excess viscosity (ȠE), excess Gibbs free energy of activation of viscos flow (ΔG* E) and molar refraction changes (ΔnD) of binary solvent mixtures of tetrahydrofurfuryl alcohol (THFA) with aromatic hydrocarbons (benzene, toluene and p-xylene) have been calculated. This was achieved by determining the physical properties including density ρ, viscosity Ƞ and refraction index nD of liquid mixtures at 298.15 K. Results of the excess parameters and deviation functions for the binary solvent mixtures at 298.15 K have been discussed by molecular interactions that occur in these mixtures. Generally, parameters showed negative values and have been found to fit well to Redlich-Kister
... Show MoreBaluti Formation of the Rhaetian (Late Triassic) age is composed mainly of dolomite, the unit formed with dolomitic limestone, dolomitic breccias and limestone begins with gray or dark gray colored and sugar textured dolomitic limestones including micrite with shale horizons. Baluti Formation was deposited in carbonate platform, and slumped to deeper margins forming carbonate debrites and breccias of various types.
Petrographic examination of the dolomites reveals various crystal habits and textures of the dolomites. Planktonic bivalve, calcisphere and echinoid spicules were found in the Baluti Formation settled in deep-margin carbonate environment. Nine dolomite-rock textures were identified and classified according to the crystal-si
Three stations were chosen on the water treatment plan of al- madaan .The Samples collected from the (Raw water) and the Sedimentation, filtration and storage water and the drinking water of outlet. Coliform densities T.S and F.C and TS and F.S and total bacterial count as bacteriological pollution indicators, as moste probable number (MPN) method was studied in test. Also some of the chemical characteristics of the water like pH , total suspended solid T.S.S, T.D.D.and S04 , T.Hardness , Ca++ , Mg++ . From the results it were indicated . The study showed the drinking water of outlet (distriputed in system) was agree with WHO criteria and Iraqi limits standards .
Volcaniclastic rocks of Al Muqdadiya Formation (Pliocene) in Injana area, southern Hemrin anticline, NE of Iraq, were studied ( petrographically, physically, mineralogically and geochemically , as well as the engineering properties) to assess the suitability of volcaniclastic rocks to use them in industry as refractories. The results show that the physical and engineering properties change with the temperature change. The bulk density and the specific gravity increase by increasing temperature while the apparent porosity, water sorption and the linear shrinkage decrease. On the other hand the compressive strength increase by increasing temperature. The volcaniclastics have very low thermal conductivity.
The petrography, mineralogy and
The most significant function in oil exploration is determining the reservoir facies, which are based mostly on the primary features of rocks. Porosity, water saturation, and shale volume as well as sonic log and Bulk density are the types of input data utilized in Interactive Petrophysics software to compute rock facies. These data are used to create 15 clusters and four groups of rock facies. Furthermore, the accurate matching between core and well-log data is established by the neural network technique. In the current study, to evaluate the applicability of the cluster analysis approach, the result of rock facies from 29 wells derived from cluster analysis were utilized to redistribute the petrophysical properties for six units of Mishri
... Show MoreIn this study, several ionanofluids (INFs) were prepared in order to study their efficiency as a cooling medium at 25 °C. The two-step technique is used to prepare ionanofluid (INF) by dispersing multi-walled carbon nanotubes (MWCNTs) in two concentrations 0.5 and 1 wt% in ionic liquid (IL). Two types of ionic liquids (ILs) were used: hydrophilic represented by 1-ethyl-3-methylimidazolium tetrafluoroborate [EMIM][BF4] and hydrophobic represented by 1-hexyl-3-methylimidazolium hexafluorophosphate [HMIM][PF6]. The thermophysical properties of the prepared INFs including thermal conductivity (TC), density and viscosity were measured experimental
The electrochemical polymerization of the monomer sulfanilamide (SAM) in an aqueous solution at room temperature produces polysulfanilamide (PSAM). The Fourier Transform Infrared spectroscopy (FTIR) was used to investigate the properties of the prepared polymer layer that generated on the stainless steel (St.S) surface (working electrode) and Atomic Force Microscope (AFM) was used to characterize the morphology, topology, and detailed surface structure of polymer layer that generated on the surface. The corrosion behavior of uncoated and coated St.S were evaluated by using the electrochemical polarization method in a 0.2 M HCl solution and a temperature range of 293–323 K, the anticorrosion action of the polymer coating on stainless steel
... Show More