Crystalline silicon (c-Si) has low optical absorption due to its high surface reflection of incident light. Nanotexturing of c-Si which produces black silicon (b-Si) offers a promising solution. In this work, effect of H2O2 concentrations towards surface morphological and optical properties of b-Si fabricated by two-step silver-assisted wet chemical etching (Ag-based two-step MACE) for potential photovoltaic (PV) applications is presented. The method involves a 30 s deposition of silver nanoparticles (Ag NPs) in an aqueous solution of AgNO3:HF (5:6) and an optimized etching in HF:H2O2:DI H2O solution under 0.62 M, 1.85 M, 2.47 M, and 3.7 M concentrations of H2O2 at 5 M HF. On the b-Si, nanowires with 250-950 nm heights and an average diameter of 150-280 nm are obtained. Low concentrations of H2O2 result in denser nanowires with an average length of 900-950 nm and diameters of about 150-190 nm. The b-Si exhibit outstanding broadband antireflection due to the refractive index grading effect represented as WAR within the 300-1100 nm wavelength region. B-Si obtained after etching in a solution with 0.62 M concentration of H2O2, demonstrate WAR of 7.5%. WAR of 7.5% results in an absorption of up to 95.5 % at a wavelength of 600 nm. The enhanced broadband light absorption yields maximum potential short-circuit current density (Jsc(max)) of up to 38.2 mA/cm2, or 45.2% enhancement compared to the planar c-Si reference.
Nanofluids, liquid suspensions of nanoparticles (Np), are an effective agent to alter the wettability of oil-wet reservoirs to water-wet thus promoting hydrocarbon recovery. It can also have an application to more efficient carbon storage. We present a series of contact angle (θ) investigations on initially oil-wet calcite surfaces to quantify the performance of hydrophilic silica nanoparticles for wettability alteration. These tests are conducted at typical in-situ high pressure (CO2), temperature and salinity conditions. A high pressure–temperature (P/T) optical cell with a regulated tilted surface was used to measure the advancing and receding contact angles at the desired conditions. The results showed that silica nanofluids can alte
... Show MoreThere are many tools and S/W systems to generate finite state automata, FSA, due to its importance in modeling and simulation and its wide variety of applications. However, no appropriate tool that can generate finite state automata, FSA, for DNA motif template due to the huge size of the motif template. In addition to the optional paths in the motif structure which are represented by the gap. These reasons lead to the unavailability of the specifications of the automata to be generated. This absence of specifications makes the generating process very difficult. This paper presents a novel algorithm to construct FSAs for DNA motif templates. This research is the first research presents the problem of generating FSAs for DNA motif temp
... Show More
The mechanism of hydrogen (H2) gas sensor in the range of 50-200 ppm of RF-sputtered annealed zinc oxide (ZnO) and without annealing was studied. The X-ray Diffraction( XRD) results showed that the Zn metal was completely converted to ZnO with a polycrystalline structure. The I–V characteristics of the device (PT/ZnO/Pt) measured at room temperature before and after annealing at 450 oC for4h, from which a linear relationship has been observed. The sensors had a maximum response to H2 at 350 oC for annealing ZnO and showed stable behavior for detecting H2 gases in the range of 50 to 200 ppm. The annealed film exhibited hig |
The buildup factor was measured after irradiating Iraq carbon black powder using each of and sources respectively, using mixing ratios 40% & 50% for thickness range . The results showed that the buildup factor depends on energy and has limited dependence on the mixing ratio. The QIFT program succeeded accenting for the experimental results even for expected values more than 4 m.f.p outside the thickness range.
Nanoparticles are a special group of materials with unique features and extensive applications in diverse fields. The use of nanoparticles of some metals is a viable solution to stop infectious diseases due to the antimicrobial properties of these nanoparticles. The present work demonstrates the effect of silver nanoparticles (AgNPs) on the antibacterial activity of four different antibiotics (amoxicillin, ceftriaxone, chloramphenicol, and penicillin) against eleven Gram-positive and Gram-negative isolates. Disk diffusion method was used to determine the antibacterial activity of various classes of antibiotics in the absence and presence of sub-inhibitory silver nanoparticles of concentration (80 microgram/ml). A synergistic effect was o
... Show MoreBromelain is a proteolytic enzyme rich in cysteine proteases, extracted from the stem and fruit of pineapple (Ananas comosus). There are several therapeutic applications of the bromelain enzyme, where it has anti-inflammatory, anti-cancer, and antimicrobial activity, reduces joint pain, and accelerates wound healing. In the current study, bromelain enzyme was loaded on silver nanoparticles (Br-AgNPs) prepared using the citrate-reduction Turkevich method. Different characterization analyses were performed, including UV-Vis spectrophotometers, FTIR, SEM, and XRD analyses. Moreover, the antioxidant activity of prepared Br-AgNPs was evaluated by DPPH assay. The results of UV-Vis showed a peak at 434 nm, which referred to the AgNPs f
... Show MoreThe present study involves experimental analysis of the modified Closed Wet Cooling Tower (CWCT) based on first and second law of thermodynamics, to gain a deeper knowledge in this important field of engineering in Iraq. For this purpose, a prototype of CWCT optimized by added packing under a heat exchanger was designed, manufactured and tested for cooling capacity of 9 kW. Experiments are conducted to explore the effects of various operational and conformational parameters on the towers thermal performance. In the test section, spray water temperature and both dry bulb temperature and relative humidity of air measured at intermediate points of the heat exchanger and packing. Exergy of water and air were calculated by applying the exergy
... Show MoreThis paper describes theoretical modeling of electrostatic mirror based on two cylindrical electrodes, A computational investigation has been carried out on the design and properties of the electrostatic mirror. we suggest a mathematical expression to represent the axial potential of an electrostatic mirror. The beam path by using the Bimurzaev technique have been investigated as a mirror trajectory with the aid of Runge – Kutta method. the electrode shape of mirror two electrode has been determined by using package SIMION computer program . The spherical and chromatic aberrations coefficients of mirror has been computed and normalized in terms of the focal length. The choice of the mirror depends on the op
... Show MoreSpray pyrolysis technique was subjected to synthesized (SnO2)1-x (TiO2: CuO) x Thin films on different substrates like glass and single crystal silicon using. The structure of the deposited films was studied using x-ray diffraction. A more pronounced diffraction peaks of SnO2 while no peaks of (CuO , TiO2 ) phase appear in the X-ray profiles by increasing of the content of (TiO2 , CuO) in the sprayed films. Mixing concentration (TiO2 , CuO) influences on the size of the crystallites of the SnO2 films ,the size of crystallites of the spray paralyzed oxide films change in regular manner by increasing of (TiO
... Show More