In this work, the effects of size, and temperature on the linear and nonlinear optical properties in InGaN/GaN inverse parabolic and triangular quantum wells (IPQW and ITQW) for different concentrations at the well center were theoretically investigated. The indium concentrations at the barriers were fixed to be always xmax = 0.2. The energy levels and their associated wave functions are computed within the effective mass approximation. The expressions of optical properties are obtained analytically by using the compact density-matrix approach. The linear, nonlinear, and total absorption coefficients depending on the In concentrations at the well center are investigated as a function of the incident photon energy for different values of temperature and quantum wells size. The results show that the In concentrations, size and temperature have a significant effect on these optical properties. The positions of the resonance peaks of the absorption coefficients were blue-shifted under increasing indium compositions in the quantum wells (InGaN) and temperature while they were red-shifted with the increase in the thickness of the wells. Moreover, the amplitudes of the resonance peaks were enhanced under the increase of the In composition, the temperature, and the thickness of the quantum wells. The optical absorption in ITQW structure is slightly greater than that in IPQW one.
In this paper a thin films of selenium was prepare on substrates of n-Si by evaporation in a vacuum technique with thickness about 0.5μm. And then an annealing process was done on samples at two temperature (100 and 200) C ° in a vacuum furnace (10-3 torr).
Some structural, optical and mechanical properties of prepared thin films were measured. Results showed that the prepared film was the crystallization, optical transmittance and micro hardness of the prepared thin films increased significantly after annealing.
In this work, The effect of annealing treatment at different temperatures (373, 423 and 473) K and chemical treatment with talwen at different immersion time (40, 60 and 80) min on structural and optical properties of the bulk heterojunction (BHJ) blend copper phthalocyanine tetrasulfonic acid tetrasodium salt/poly dioxyethylenethienylene doped with polystyrenesulphonic acid (CuPcTs/PEDOT:PSS) thin films were investigated. The films were fabricated using spin coating technique. X-ray diffraction (XRD) measurements displayed only one peak at 2θ =4.5o corresponding to (001) direction which has dhkl larger than for standard CuPcTs. The dhkl increase then decrease with increasing annealing temperature and
the time of chemical treatment w
Background: This research describes the methodology used for the preparation of selenium nanoparticles from Pseudomonas aeruginosa and their administration to lambs for lipid profile checking, administration of selenium nanoparticles as a medication in lambs results in hypolipidemia. Aim: The study aimed to investigate the potential of selenium nanoparticles in improving lipid profiles in lambs. Methods: Healthy lambs (n=10) of similar age and weight were selected for the study. The animals were housed in individual pens with free access to water and a standard diet. The lambs were randomly divided into two groups: the control group (n=5) and the treatment group (n=5). The control group received a standard diet, while the treatme
... Show MoreThe factorial analysis method consider a advanced statistical way concern in different ways like physical education field and the purpose to analyze the results that we want to test it or measure or for knowing the dimensions of some correlations between common variables that formed the phenomenon in less number of factors that effect on explanation , so we must depend use the self consistent that achieved for reaching that basic request. The goal of this search that depending on techntion of self consistent degree guessing for choosing perfect way from different methods for (orthogonal & oblique) kinds in physical education factor studies and we select some of references for ( master & doctoral) and also the scientific magazine and confere
... Show MoreThis research studies the rheological properties ( plastic viscosity, yield point and apparent viscosity) of Non-Newtonian fluids under the effect of temperature using different chemical additives, such as (xanthan gum (xc-polymer), carboxyl methyl cellulose ( High and low viscosity ) ,polyacrylamide, polyvinyl alcohol, starch, Quebracho and Chrome Lignosulfonate). The samples were prepared by mixing 22.5g of bentonite with 350 ml of water and adding the additives in four different concentrations (3, 6, 9, 13) g by using Hamilton Beach mixer. The rheological properties of prepared samples were measured by using Fan viscometer model 8-speeds. All the samples were subjected to Bingham plastic model. The temperature range studi
... Show MoreThe researcher concluded that it consists of several types of structures, where the intellectual structure related to the choice of the idea, its treatment, its effect, the choice of the topic, the way ideas are addressed and presented in the film, and then the dramatic structure of the film's characters, the formulation of its events, its dramatic composition, its temporal arrangement, the identification of the parties to the conflict and their management, then these are formulated. Visions and ideas through the visual and audio signal systems, which work to highlight the stylistic features in the character of the film director.
ZnO nanostructures were synthesized by hydrothermal method at different temperatures and growth times. The effect of increasing the temperature on structural and optical properties of ZnO were analyzed and discussed. The prepared ZnO nanostructures were characterized by X-ray diffraction (XRD), UV–Vis. absorption spectroscopy (UV–Vis.), Photoluminescence (PL), and scanning electron microscopy (SEM). In this work, hexagonal crystal structure prepared ZnO nanostructures was observed using X-ray diffraction (XRD) and the average crystallite size equal 14.7 and 23.8 nm for samples synthesized at growth time 7 and 8 hours respectively. A nanotubes-shaped surface morphology was found using scanning electron microscopy (SEM). The optic
... Show MoreZinc oxide (ZnO) nanoparticles were synthesized using a modified hydrothermal approach at different reaction temperatures and growth times. Moreover, a thorough morphological, structural and optical investigation was demonstrated using scanning electron microscopy (SEM), x-ray diffraction (XRD), ultra-violate visible light spectroscopy (UV-Vis.), and photoluminescence (PL) techniques. Notably, SEM analysis revealed the occurrence of nanorods-shaped surface morphology with a wide range of length and diameter. Meanwhile, a hexagonal crystal structure of the ZnO nanoparticles was perceived using XRD analysis and crystallite size ranging from 14.7 to 23.8 nm at 7 and 8 ℎ𝑟𝑠., respectively. The prepared ZnO samples showed good abso
... Show MoreAbstract
In light of the great technological development and the emergence of globalization has increased global competition, where it became competitive exercise pressure on all sectors. In light of this companies mast enviorment depend on the means that keeps them on the competitive position through access to information about competitors in order to help them to draw a strategy that will achieve a competitive edge either through excellence or reduce the costs of their products and this means intelligence competitive and reverse engineering that help to gain information on competitors analyze and put of the decision-maker From this point formed the idea of research in the statement of the role of
... Show Morethe films of cdse pure and doped with copper ratio glass substrate effect od cucomcentration technique thikness doped with copper is an anonmg and the density of state increases
 
        