In this work, the effect of preparing a composite of copper oxide nanoparticles with carbon on some of its optical properties was studied. The composite preparing process was carried out by exploding graphite electrodes in an aqueous suspension of copper oxide. The properties of the plasma which is formed during the explosion were studied using emission spectroscopy in order to determine the most important elements that are present in the media. The electron’s density and their energy, which is the main factor in the composite process, were determined. The particle properties were studied before and after the exploding process. The XRD showed an additional peak in the copper oxides pattern corresponding to the hexagonal graphite structure for the composite. The UV-visible absorbance for the composite was significantly enhanced. The direct bandgap decreased from 2.55 to 2.4 eV, and the indirect bandgap decreased from 1.1 to 1 eV, for the composite.
An experimental model is used to simulate the loss of soil lateral confinement due to excavation nearby an individual axially loaded pile. The effects of various parameters, such as the horizontal distance of excavation, depth of excavation and pile slenderness ratios are investigated. The experimental analysis results showed the effect of excavation is more remarkable as the horizontal distance of excavation becomes closer to the pile than half pile length. The effect of excavation diminishes gradually as the horizontal distance increases beyond that distance for all the investigated pile slenderness ratios and depths of excavation. The pile head deflection, settlement and bending moments along pile increase with decreasing horizontal d
... Show MorePrimary hypogonadism combined with Müllerian hypoplasia and partial alopecia are common features of this syndrome, which was reported only in four earlier families from areas where consanguineous marriage is prevalent. An autosomal recessive pattern of inheritance was suggested earlier and is supported by this report.
Apium graveolens has been utilized for a multitude of purposes due to its diverse pharmacological characteristics. On the other hand, little is known about how the fatty acids (saturated and unsaturated) terpenes and steroids found in Iraqi Apium graveolens affect the human cancer cells. The purpose of this study was to examine the effects of Iraqi Apium graveolens petroleum ether extract on the human prostate cancer cell line (PC3). Subsidiary extraction and phytochemical analysis by GC/MS were performed.The dry and fresh aerial parts (leaves and stem) of Apium graveolens were extracted using a Soxhlet device with 70 % ethanol, then fractionated with petroleum ether. Then Gas Chromatography System was used to identify the bioactive
... Show MoreA new 5‐fluorouracil–naproxen conjugate is synthesized as a mutual prodrug for targeting cancer tissues. The structure of the target compound and their intermediate are characterized by their melting point, IR, 1H NMR, 13C NMR, and elemental microanalysis. The cytotoxic activity is preliminarily evaluated using nonsmall lung cancer CRL‐2049, human breast cancer CAL‐51, and one type of normal cell line; rat embryo fibroblast cell line. The synthesized compound shows a good cytotoxic effect at the cancer cell and no significant effect at rat embryo fibroblast cell line.
The UN plans to achieve several development objectives by 2030. These objectives address global warming, a major issue. This method aims to improve sustainable accounting performance (AP). In this circumstance, AI is being applied in various fields, notably in economic, social, and environmental (ESE) domains. This research investigates how sustainable development (SD) influences AI methodologies and AP improvement. The research examined a sample of Iraqi banks listed on the Iraq Stock Exchange from 2014 to 2022. AI was measured by ATM and POS prevalence. A three-dimensional approach examined economic, social, and environmental (ESE) sustainability. Meanwhile, the performance of sustainable accounting was measured through the return on asse
... Show MoreVarious simple and complicated models have been utilized to simulate the stress-strain behavior of the soil. These models are used in Finite Element Modeling (FEM) for geotechnical engineering applications and analysis of dynamic soil-structure interaction problems. These models either can't adequately describe some features, such as the strain-softening of dense sand, or they require several parameters that are difficult to gather by conventional laboratory testing. Furthermore, soils are not completely linearly elastic and perfectly plastic for the whole range of loads. Soil behavior is quite difficult to comprehend and exhibits a variety of behaviors under various circumstances. As a result, a more realistic constitutive model is
... Show MoreIn this paper a prey - predator model with harvesting on predator species with infectious disease in prey population only has been proposed and analyzed. Further, in this model, Holling type-IV functional response for the predation of susceptible prey and Lotka-Volterra functional response for the predation of infected prey as well as linear incidence rate for describing the transition of disease are used. Our aim is to study the effect of harvesting and disease on the dynamics of this model.
Many additives are used to improve the performance of cables in terms of increasing their flame retardancy, thermal stability, thermal conductivity, and other characteristics. Unfortunately, most of these additives contain heavy metals. Therefore, the main objective of this study is to introduce a material representing a new generation of environmentally friendly heavy metal-free stabilizers for cable grade poly(vinyl chloride) that can compete with traditional materials in terms of performance and distinctive properties. This unique additive is Oxydtron, a synthetic silicate or simply nanocement. The tests performed are rheological properties represented by a capillary rheometry analysis, limiting o
In this article, a numerical method integrated with statistical data simulation technique is introduced to solve a nonlinear system of ordinary differential equations with multiple random variable coefficients. The utilization of Monte Carlo simulation with central divided difference formula of finite difference (FD) method is repeated n times to simulate values of the variable coefficients as random sampling instead being limited as real values with respect to time. The mean of the n final solutions via this integrated technique, named in short as mean Monte Carlo finite difference (MMCFD) method, represents the final solution of the system. This method is proposed for the first time to calculate the numerical solution obtained fo
... Show More