Thermal conductivity for epoxy composites filled with Al2O3 and Fe2O3 are
calculated, it found that increasing the weight ratio of Al2O3 and Fe2O3 lead to
increase in the values of thermal conductivity, but the epoxy composite filled with
Fe2O3, have values of thermal conductivity less than for epoxy composite filled with
Al2O3, for the same weight ratio. Also thermal conductivity calculated for epoxy
composites by contact to every two specimens (like sandwich) content same weight
ratio of alumina-oxide and ferrite-oxide, its found that the value of thermal
conductivity lays between the values of epoxy filled Al2O3 and of epoxy filled Fe2O3
Aluminum alloy 5052 had been anodized by sulfuric acid as an electrolyte under constant voltage and the anodic oxide film produce will be testing by potentiostatic anodic polarization .Two variables, which were considered as important variables, were studied. These variables are anodizing time 15,30 min. and sealing time 10,20 min., and the test by potentiostatic anodic polarization through electro chemical polarization measurements in solutions of 1N na2so4 ( PH= 1 ). The results are discussed in light of the rate of ionic current flow through the coating during anodic polarization measurements.
To study the effect of iron overload due to continuous blood transfusions on peroxidation products, such as malondialdehyde (MDA) and peroxynitrite, with evaluation of some antioxidants like, glutathione (GSH), superoxide dismutase (SOD), vitamin A, vitamin C, vitamine E, Ceruloplasmin, uric acid and albumin in thalassemia patients. Forty patients with thalassemia major, aged 5 to 15 years, were carried out in Abn-Alatheer Teaching Hospital in Mosul city, during the period from October 2007 to April 2008. They were on Chelation therapy with desferÂrioxamine. They were divided into two groups, the first one without iron overload (90,97±12.92), and the second one with iron overload (157.75±7.57). All the patien
... Show MoreAnemia of chronic disease (ACD) and iron deficiency anemia (IDA) are the two most important types of anemia in rheumatoid arthritis (RA). Functional iron deficiency in ACD can be attributed to overexpression of the main iron regulatory hormone hepcidin leading to diversion of iron from the circulation into storage sites resulting in iron-restricted erythropoiesis. The aim is to investigate the role of circulating hepcidin and to uncover the frequency of IDA in RA. The study included 51 patients with RA. Complete blood counts, serum iron, total iron binding capacity, ferritin, and hepcidin- 25 were assessed. ACD was found in 37.3% of patients, IDA in 11.8%, and combined (ACD/IDA) in 17.6%. Serum hepcidin was higher in ACD than in con
... Show MoreDensity functional theory (DFT) calculations were used to evaluate the capability of Glutamine (Gln) and its derivative chemicals as inhibitors for the anti-corrosive behavior of iron. The current work is devoted to scrutinizing reactivity descriptors (both local and global) of Gln, two states of neutral and protonated. Also, the change of Gln upon the incorporation into dipeptides was investigated. Since the number of reaction centers has increased, an enhancement in dipeptides’ inhibitory effect was observed. Thus, the adsorption of small-scale peptides and glutamine amino acids on Fe surfaces (1 1 1) was performed, and characteristics such as adsorption energies and the configuration with the highest stability and lowest energy were ca
... Show MoreThis work characterizes the fractographic features of the neat epoxy and ZrO2 epoxy nanocomposites. All samples were subjected to a tensile test to determine the tensile strength and tensile modulus. SEM images were used to study the morphology of the fractured surface. The fractographic of the fracture surfaces were studied by microstructure analysis program (j-images) to specify the effect of ZrO2 nanoparticles on tensile performance and failure mechanism for ZrO2 epoxy nanocomposites. The tensile test results show that the addition of ZrO2 nanoparticles (2, 4, 6, 8, and 10 vol.%) to the epoxy matrix leads to increase the tensile strength about 40% for optimal content of ZrO2 nanop
... Show MoreIn this study, we try to deviate from the traditional methods of preserving fish. The research depends on finding alternative modern methods by which fish bodies can be preserved in a better way and for long periods after conducting some laboratory treatments on the specimens to ensure obtaining clean and clear samples suitable for diagnosis and study, in addition to keeping it in a new, lightweight and elegant form that can give three-dimensional shapes to the specimens. The final specimens were of high quality and unbreakable durability with high clarity and transparency and low manufacturing costs. This study is the first of its kind.
One of the most essential components of asphalt pavements is the filler. It serves two purposes. First, this fine-grained material (diameter less than 0.075 mm) improves the cohesiveness of aggregate with bitumen. Second, produce a dense mixture by filling the voids between the particles. Aluminum dross (AD), which is a by-product of aluminum re-melting, is formed all over the world. This material causes damage to humans and the environment; stockpiling AD in landfills is not the best solution. This research studies the possibility of replacing part of the conventional filler with aluminum dross. Three percent of dross was used, 10, 20, and 30% by filler weight. The MarshallMix design method was adopted to obtain the op
... Show MoreThe aim of this work is to evaluate some mechanical and physical
properties (i.e. the impact strength, hardness, flexural strength,
thermal conductivity and diffusion coefficient) of
(epoxy/polyurethane) blend reinforced with nano silica powder (2%
wt.). Hand lay-up technique was used to manufacture the composite
and a magnetic stirrer for blending the components. Results showed
that water had affected the bending flexural strength and hardness,
while impact strength increased and thermal conductivity decreased.
In addition to the above mentioned tests, the diffusion coefficient
was calculated using Fick’s 2nd law.
The influence of different thickness (500, 1000, 1500, and 2000) nm on the electrical conductivity and Hall effect measurements have been investigated on the films of copper indium gallium selenide CuIn1-xGaxSe2 (CIGS) for x= 0.6.The films were produced using thermal evaporation technique on glass substrates at R.T from (CIGS) alloy. The electrical conductivity (σ), the activation energies (Ea1, Ea2), Hall mobility and the carrier concentration are investigated and calculated as function of thickness. All films contain two types of transport mechanisms of free carriers, and increases films thickness was fond to increase the electrical cAnductivity whereas the activation energy (Ea) would vary with films thickness. Hall Effect analysis resu
... Show More