A new blind restoration algorithm is presented and shows high quality restoration. This
is done by enforcing Wiener filtering approach in the Fourier domains of the image and the
psf environments
After restoration of Iraqi marshes during 2003, three locations were chosen, one in each main marsh (Um Al-Naaj site in Al-Hwaizeh marsh; Al-Nagarah site in Al-Hammar marsh and Al-Baghdadia site in Al-Chebaysh marsh) to determine the concentrations of nutrients (Nitrate, Nitrite, Phosphate and Silicate) in water seasonally for the period winter, spring, summer, and autumn at 2007. Five water replicates were collected from each site, seasonally. In the Lab., the samples were analyzed by colorimetric methods; the results showed that Um-Al-Naaj site has the highest nutrients level, while Al-Nagarah site has the lowest level. The statistical program t-test was applied at the significant levels (P-value < 0.01) and (P-value < 0.05) to know
... Show MoreMany numerical approaches have been suggested to solve nonlinear problems. In this paper, we suggest a new two-step iterative method for solving nonlinear equations. This iterative method has cubic convergence. Several numerical examples to illustrate the efficiency of this method by Comparison with other similar methods is given.
In this article, the nonlinear problem of Jeffery-Hamel flow has been solved analytically and numerically by using reliable iterative and numerical methods. The approximate solutions obtained by using the Daftardar-Jafari method namely (DJM), Temimi-Ansari method namely (TAM) and Banach contraction method namely (BCM). The obtained solutions are discussed numerically, in comparison with other numerical solutions obtained from the fourth order Runge-Kutta (RK4), Euler and previous analytic methods available in literature. In addition, the convergence of the proposed methods is given based on the Banach fixed point theorem. The results reveal that the presented methods are reliable, effective and applicable to solve other nonlinear problems.
... Show MoreThe Korteweg-de Vries equation plays an important role in fluid physics and applied mathematics. This equation is a fundamental within study of shallow water waves. Since these equations arise in many applications and physical phenomena, it is officially showed that this equation has solitary waves as solutions, The Korteweg-de Vries equation is utilized to characterize a long waves travelling in channels. The goal of this paper is to construct the new effective frequent relation to resolve these problems where the semi analytic iterative technique presents new enforcement to solve Korteweg-de Vries equations. The distinctive feature of this method is, it can be utilized to get approximate solutions for travelling waves of
... Show MoreIn wireless broadband communications using single-carrier interleave division multiple access (SC-IDMA) systems, efficient multiuser detection (MUD) classes that make use of joint hybrid decision feedback equalization (HDFE)/ frequency decision-feedback equalization (FDFE) and interference cancellation (IC) techniques, are proposed in conjunction with channel coding to deal with several users accessing the multipath fading channels. In FDFE-IDMA, the feedforward (FF) and feedback (FB) filtering operations of FDFE, which use to remove intersymbol interference (ISI), are implemented by Fast Fourier Transforms (FFTs), while in HDFE-IDMA the only FF filter is implemented by FFTs. Further, the parameters involved in the FDFE/
... Show MoreIn this paper, we apply a new technique combined by a Sumudu transform and iterative method called the Sumudu iterative method for resolving non-linear partial differential equations to compute analytic solutions. The aim of this paper is to construct the efficacious frequent relation to resolve these problems. The suggested technique is tested on four problems. So the results of this study are debated to show how useful this method is in terms of being a powerful, accurate and fast tool with a little effort compared to other iterative methods.