Copper indium disulphide, CuInS2, is a promising absorber material for thin film photovoltaic which has recently attracted considerable attention due to its suitability to reach high efficiency solar cells by using low cost techniques. In this work CuInS2 thin films have been deposited by chemical spray pyrolysis onto glass substrates at ambient atmosphere, using different [Cu]/[In] ratio in the aqueous solutions at substrate temperature 3000C
and different annealing temperatures . Structural and optical properties of CIS films were analyzed by X-ray diffraction, and optical spectroscopy. Sprayed CIS films are polycrystalline with a chalcopyrite structure with a preferential orientation along the 112 direction and no remains of oxides in higher ratio were found after spraying in suitable conditions. X-ray microanalysis shows that a chemical composition near to stoichiometry can be obtained. An optical properties showed this material have a direct band gap and the energy band in the range of about 1.4 -1.61 eV at different ratio was found for sprayed CIS thin films.
ZnIn2(Se1-xTex)4 (ZIST) chalcopyrite semiconductor thin films at various contents (x = 0.0, 0.2, and 0.4) are deposited on glass and p type silicon (111) substrate to produce heterojunction solar cell by using the thermal evaporation technique at RT where the thickness of 500 nm with a vacuum of 1×10-5 mbar and a deposited rates of 5.1 nm/s. This study focuses on how differing x content effect on the factors affecting the solar cell characteristics of ZIST thin film and n-ZIST/p-Si heterojunction. X-ray diffraction XRD investigation shows that this structure of ZIST film is polycrystalline and tetragonal, with (112) preferred orientation at 2θ ≈ 27.01. Moreover, atomic force microscopy AFM is studying the external morphology of
... Show MoreIn this work, a functional nanocomposite consisting of multi walled carbon nanotubes combined with nanoparticles of silver and Pomegranate peel extract (MWCNTs- SNPs -NPGPE) was successfully synthesized using ultra sonic technique. The nanocomposite has been characterized using Transmission electron microscope (TEM), XRD, Energy dispersive X-ray spectroscopy (EDS) UV-Vis and FTIR. The obtained results reveal that the MWCNTs-SNPs-NPGPE nanocomposite exhibits form of nanotubes with rough surfaces and containing black spots, which are the silver nanoparticles. The dimensions of this tube are 161 nm in length and 60 nm in width with nanoparticles of silver not exceeding 20 nm. The XRD pattern of the prepared MWCNTs-SNPs-NPGPE nanocomposite s
... Show MoreIn the present work the clathrate hydrate dissociation enthalpies of refrigerant R134a+ water system, and R134a + water + salt system were determined. The heat of dissociation of three types of aqueous salts solutions of NaCl, KBr and NaF at three concentrations (0.09, 0.17and 0.26) mol·kg−1 for each salt type, were enthalpy measured. The Clapeyron equation was used tocalculate heat of dissociation of experimental data for binary and ternary system.In order to find the effect of compressibility factor on heat dissociation enthalpy, the study was conducted by using equation of state proposed by Peng and Robinson Stryjek-Vera (PRSV). The obtained results of dissociation enthalpy for binary system were (143.8) kJ.mol-1
... Show MoreDiabetic nephropathy (DN) is the foremost cause of end-stage renal disease. Early detection of DN can spare diabetic patients of severe complications. This study aimed to evaluate the diagnostic value of red cell distribution width (RDW) and neutrophil-lymphocyte ratio (NLR) in the detection of DN in patients with type 2 diabetes mellitus (T2DM). This cross-sectional study included a total of 130 patients with T2DM, already diagnosed with T2DM. The albumin creatinine ratio (ACR) in urine samples was calculated for each patient, according to which patients were divided into two groups: with evidence of DN when ACR ? 30 mg/g, and those with no evidence of DN when ACR < 30 mg/g. According to multivariate analysis, each of disease duration (OR
... Show MoreShort Multi-Walled Carbon Nanotubes functionalized with OH group (MWCNTs-OH) were used to synthesize flexible MWCNTs networks. The MWCNTs suspension was synthesized using Benzoquinone (BQ) and N, N Dimethylformamide alcohol (DMF) in specific values and then deposited on filter paper by filtration from suspension (FFS) method. Polypyrrole (PPy) conductive polymer doped with metallic nanoparticles (MNPs) prepared using in-situ chemical polymerization method. To improve the properties of the MWCNTs networks, a coating layer of (PPy) conductive polymer, PPy:Ag nanoparticles, and PPy: Cu nanoparticles were applied to the network. The fabricated networks were characterized using an X-ray diffractometer (XRD), UV-Vis. spectrometer, and Ato
... Show MoreA chemical optical fiber sensor based on surface plasmon resonance (SPR) was developed and implemented using multimode plastic optical fiber. The sensor is used to detect and measure the refractive index and concentration of various chemical materials (Urea, Ammonia, Formaldehyde and Sulfuric acid) as well as to evaluate the performance parameters such as sensitivity, signal to noise ratio, resolution and figure of merit. It was noticed that the value of the sensitivity of the optical fiber-based SPR sensor, with 60nm and 10 mm long, Aluminum(Al) and Gold (Au) metals film exposed sensing region, was 4.4 μm, while the SNR was 0.20, figure of merit was 20 and resolution 0.00045. In this work a multimode
... Show MoreA thin film of AgInSe2 and Ag1-xCuxInSe2 as well as n-Ag1-xCuxInSe2 /p-Si heterojunction with different Cu ratios (0, 0.1, 0.2) has been successfully fabricated by thermal evaporation method as absorbent layer with thickness about 700 nm and ZnTe as window layer with thickness about 100 nm. We made a multi-layer of p-ZnTe/n-AgCuInSe2/p-Si structures, In the present work, the conversion efficiency (η) increased when added the Cu and when used p-ZnTe as a window layer (WL) the bandgap energy of the direct transition decreases from 1.75 eV (Cu=0.0) to 1.48 eV (Cu=0.2 nm) and the bandgap energy for ZnTe=2.35 eV. The measurements of the electrical properties for prepared films showed that the D.C electrical conductivity (σd.c) increase
... Show MoreWe investigated at the optical properties, structural makeup, and morphology of thin films of cadmium telluride (CdTe) with a thickness of 150 nm produced by thermal evaporation over glass. The X-ray diffraction study showed that the films had a crystalline composition, a cubic structure, and a preference for grain formation along the (111) crystallographic direction. The outcomes of the inquiry were used to determine these traits. With the use of thin films of CdTe that were doped with Ag at a concentration of 0.5%, the crystallization orientations of pure CdTe (23.58, 39.02, and 46.22) and CdTe:Ag were both determined by X-ray diffraction. orientations (23.72, 39.21, 46.40) For samples that were pure and those that were doped with
... Show MoreEffect of [Cu/In] ratio on the optical properties of CuInS2 thin films prepared by chemical spray pyrolysis on glass slides at 300oC was studied. The optical characteristics of the prepared thin films have been investigated using UV-VIS spectrophotometer in the wavelength range (300-1100 nm). The films have a direct allow electronic transition with optical energy gap (Eg) decreased from 1.51 eV to 1.30 eV with increasing of [Cu/In] ratio and as well as we notice that films have different behavior when annealed the films in the temperature 100oC (1h,2h), 200oC (1h,2h) for [Cu/In]=1.4 . Also the extinction coefficient (k), refractive index (n) and the real and imaginary dielectric constants (ε1, ε2) have been investigated
CdO:NiO/Si solar cell film was fabricated via deposition of CdO:NiO in different concentrations 1%, 3%, and 5% for NiO thin films in R.T and 723K, on n-type silicon substrate with approximately 200 nm thickness using pulse laser deposition. CdO:NiO/n-Si solar cell photovoltaic properties were examined under 60 mW/cm2 intensity illumination. The highest efficiency of the solar cell is 2.4% when the NiO concentration is 0.05 at 723K.