Copper indium disulphide, CuInS2, is a promising absorber material for thin film photovoltaic which has recently attracted considerable attention due to its suitability to reach high efficiency solar cells by using low cost techniques. In this work CuInS2 thin films have been deposited by chemical spray pyrolysis onto glass substrates at ambient atmosphere, using different [Cu]/[In] ratio in the aqueous solutions at substrate temperature 3000C
and different annealing temperatures . Structural and optical properties of CIS films were analyzed by X-ray diffraction, and optical spectroscopy. Sprayed CIS films are polycrystalline with a chalcopyrite structure with a preferential orientation along the 112 direction and no remains of oxides in higher ratio were found after spraying in suitable conditions. X-ray microanalysis shows that a chemical composition near to stoichiometry can be obtained. An optical properties showed this material have a direct band gap and the energy band in the range of about 1.4 -1.61 eV at different ratio was found for sprayed CIS thin films.
By using vacuum evaporation, thin films of the (CdS)0.75-(PbS)0.25 alloy have been deposited to form a nanocrystalline composite. Investigations were made into the morphology, electrical, optical and I-V characteristics of (CdS)0.75-(PbS)0.25 films asdeposited and after annealing at various temperatures. According to AFM measurements, the values of grain sizes rise as annealing temperatures rise, showing that the films' crystallinity has been increased through heat treatment. In addition, heat treatment results in an increase in surface roughness values, suggesting rougher films that could be employed in more applications. The prepared films have direct energy band gaps, and these band gaps increase with the increase in the degrees
... Show MoreIn this study, a theoretical scenario has been used to calculate the electronic current in sensitizer N3 molecule contact to TiO2 semiconductor for electrons in functional solar cells. It is known to play an important role on the compute the eficiency of solar cell. Some parameters of electronic current such as the transition energy, driving force energy, barrier height coupling overlapping values are determined. Transition energy is a necessary parameter to calculate the electronic current in solar cell with using wide polarity solvents Acetic acid, 2-Methoxyethanol, 1-Butanol, Methyl alcohol, chloroform, N,N-Dimethylacetamide and Ethyl alcohol via the quantum donor-acceptor system. Here, we show the results of transition energy can be var
... Show MoreThis paper aims to study the effects of the long term solar activity on the critical frequencies of ionospheric F1 layer over Baghdad city, during the solar cycle 22, within (1988- 1995). It is found that the critical frequency of this layer is closely related to the sunspots number during the years of the solar cycle 22, at a middle latitude region of the world. The study discussed the effect of sunspot numbers and solar events on the electron densities of F1 layer, which is the most important ionospheric parameter.
In this research tri metal oxides were fabricated by simple chemical spray pyrolysis technique from (Sn(NO3)2.20 H2O, Zn(NO3)2.6 H2O, Cd(NO3)2.4 H2O) salts at concentration 0.1M with mixing weight ratio 50:50 were fabricated on silicon substrate n-type (111). (with & without the presence of grooves by the following diemensions (20μm width, 7.5μm depth) with thickness was about ( 0.1 ±0.05 µm) using water soluble as precursors at a substrate temperature 550 ºC±5, with spray distance (15 cm) and their gas sensing properties toward H2S gas at different concentrations (10,50,100,500 ppmv) in air were investigated at room te
... Show MoreThe aim of the current study was to develop a nanostructured double-layer for hydrophobic molecules delivery system. The developed double-layer consisted of polyethylene glycol-based polymeric (PEG) followed by gelatin sub coating of the core hydrophobic molecules containing sodium citrate. The polymeric composition ratio of PEG and the amount of the sub coating gelatin were optimized using the two-level fractional method. The nanoparticles were characterized using AFM and FT-IR techniques. The size of these nano capsules was in the range of 39-76 nm depending on drug loading concentration. The drug was effectively loaded into PEG-Gelatin nanoparticles (≈47%). The hydrophobic molecules-release characteristics in terms of controlled-releas
... Show MoreOptoelectronic devices, widely used in high energy and nuclear physics applications, suffer severe radiation damage that leads to degradations in its efficiency. In this paper, the influence of gamma radiation (137Ce source) and beta radiation (90Sr source) on the photoelectric parameters of the Si solar cell, based on the I–V characterization at different irradiation exposer, has been studied. The penetrating radiation produces defects in the base material, may be activated during its lifetime, becoming traps for electron–hole pairs produced optically and, this will, decrease the efficiency of the solar cell. The main objective of the paper is to study and measure changes in the I–V characteristics of solar cells, such as efficienc
... Show MoreAim To develop a low-density polyethylene–hydroxyapatite (HA-PE) composite with properties tailored to function as a potential root canal filling material. Methodology Hydroxyapatite and polyethylene mixed with strontium oxide as a radiopacifier were extruded from a single screw extruder fitted with an appropriate die to form fibres. The composition of the composite was optimized with clinical handling and placement in the canal being the prime consideration. The fibres were characterized using infrared spectroscopy (FTIR), and their thermal properties determined using differential scanning calorimetry (DSC). The tensile strength and elastic modulus of the composite fibres and gutta-percha were compared, dry and after 1 month storage in
... Show MoreAs many expensive and invasive procedures are used for the diagnosis or follow-up of clinical conditions, the measurement of cell-free DNA is a promising, noninvasive method, which considers using blood, follicular fluid, or seminal fluid. This method is used to determine chromosomal abnormalities, genetic disorders, and indicators of some diseases such as polycystic ovary syndrome, pre-eclampsia, and some malignancies. Cell-free DNA, which are DNA fragments outside the nucleus, originates from an apoptotic process. However, to be used as a marker for the previously mentioned diseases is still under investigation. We discuss some aspects of using cell-free DNA measurements as an indicator or marker for pathological conditions.
In this research (100* 40* 4 cm) solar cell panel was used in Baghdad at autumn season (2010), to get best solar cell panel angles experimentally, and then a mirror (40*50 cm) is use to concentrate incident sunlight intensity on a panel. At first case we get (Tilt angle ?P =60°and Surface Azimuth angle ?P =36°E) is the best angles and other case, we add a mirror at angle = 120° at bottom of panel, then we get output power (27.48watt) is bigger than without using a mirror (25.16watt). We can benefit from these cases in variety applications.