S a mples of compact magnesia and alumina were evaporated
using CO2-laser .The
Processed powders were characterized by electron microscopy
and both scanning and transmission electron microscope. The results
indicated that the particle size for both powders have reduced largely
to 0.003 nm and 0.07 nm for MgO and Al2O3, with increasing in
shape sphericity.
Benign prostate hyperplasia (BPH), non-cancerous enlargement of prostate, is the most prevalent disease entity in elderly men. BPH affects 40% of men after the age of 60year worldwide. BPH causes problems for patients with significant lower urinary tract obstructive symptoms, if not responding to medical therapy, surgical intervention is instituted. One method of the treatment of symptomatic BPH is laser prostatectomy. The understanding of tissue effects by laser radiation is very important for the safe clinical application of laser. Objective: study the 2100 nm Ho: YAG laser gross tissue effects in the prostate at different laser dose settings in an vitro model prostate tissue samples harvested from same specimen of open surgery prostat
... Show MoreIn this study, a double frequency Q-switching Nd:YAG laser beam (1064 nm and λ= 532 nm, repetition rate 6 Hz and the pulse duration 10ns) have been used, to deposit TiO2 pure and nanocomposites thin films with noble metal (Ag) at various concentration ratios of (0, 10, 20, 30, 40 and 50 wt.%) on glass and p-Si wafer (111) substrates using Pulse Laser Deposition (PLD) technique. Many growth parameters have been considered to specify the optimum condition, namely substrate temperature (300˚C), oxygen pressure (2.8×10-4 mbar), laser energy (700) mJ and the number of laser shots was 400 pulses with thickness of about 170 nm. The surface morphology of the thin films has been studied by using atomic force microscopes (AFM). The Root Mean Sq
... Show MorePure and doped TiO 2 with Bi films are obtained by pulse laser deposition technique at RT under vacume 10-3 mbar, and the influence of Bi content on the photocvoltaic properties of TiO 2 hetrojunctions is studied. All the films display photovoltaic in the near visible region. A broad double peaks are observed around λ= 300nm for pure TiO 2 at RT in the spectral response of the photocurrent, which corresponds approximately to the absorption edge and this peak shift to higher wavelength (600 nm) when Bi content increase by 7% then decrease by 9%. The result is confirmed with the decreasing of the energy gap in optical properties. Also, the increasing is due to an increase in the amount of Bi content, and shifted to 400nm when annealed at 523
... Show MoreThe laser micro-cutting process is the most widely commonly applied machining process which can be applied to practically all metallic and non-metallic materials. While this had challenges in cutting quality criteria such as geometrical precision, surface quality and numerous others. This article investigates the laser micro-cutting of PEEK composite material using nano-fiber laser, due to their significant importunity and efficiency of laser in various manufacturing processes. Design of experiential tool based on Response Surface Methodology (RSM)-Central Composite Design (CCD) used to generate the statistical model. This method was employed to analysis the influence of parameters including laser speed,
... Show MoreIn this work, the structure properties of nano Lead sulfide PbS thin films are studied. Thin samples were prepared by pulse laser deposition and deposited on glass substrates at wavelength 1064nm wavelength with a various laser energies (200,300,400,500)nm. The study of atomic force microscope (AFM) and X-ray diffraction as well as the effect of changing the laser energy on the structural properties has been studied. It has been observed that the membrane formed is of the polycrystalline type and the predominant phase is the plane (111) and (200). The minimum grain size obtained was 16.5 nm at a laser energy about 200 mJ. The results showed that thin films of average granular sizes (75 nm) could be prepared.As for the optical properties,
... Show MoreAim: To evaluate the commercial pure titanium disks that structuring by laser in two design (dot and groove) each one with three different laser scan (5, 15 and 25) and comparing with titanium surface that not subjected to any surface structuring (control) through measuring the wettability test and surface roughness test. Materials and methods: Structuring on the surface of the commercial pure titanium (CP Ti) disks was performed via using fiber laser CNC machine in two design (dot and groove) in three different laser scans (5, 15 and 25), then the structuring disks analyzed with the control group by atomic force microscope and water contact angle test. Results: The results of this study showed that the surface roughness and the wettability
... Show MoreThis study aims to evaluate the effect of low power a semi-conductor He-Ne laser 4 mw power with 635 nm length on the growth and cell viability of dermatophyte Trichophyton mentagophytes. For this study, skin samples of 22 patents were collecting; those patients were suffering from dematophytsis caused by the dermatophytes, three isolates were diagnosed in dermatophytes group were T. mentagophytes. Results showed that rays of semi-conductor laser with 635 nm wavelength of 4 mn power have affected the fungal growth T. mentagophytes (the ideal isolates) in sold media when exposed to laser radiation in different periods of 10-20 second duration, but the other two isolates gave negative results. The effects of He-Ne laser rays in dry w
... Show MoreIn this work, results of a mathematical analysis of the role of workpiece preheating in laser keyhole welding were presented. This analysis considered the steady-state welding as well as certain range of boundary conditions over which preheating effect would be indicated. This work is an attempt to interpret the role of preheating to increase welding depth and perform keyhole welding with high quality using physical and thermal properties of steel alloys.
BaTiO3 thin films have been deposited on Si (111) and glass substrates by using pulsed laser deposition technique. The films were characterized by using X-ray diffraction, atomic force microscope and optical transmission spectra. The films growth on Si after annealing at 873K showed a polycrystalline nature, and exhibited tetragonal structure, while on glass substrate no growth was noticed at that temperature. UV-VIS transmittance measurements showed that the films are highly transparent in the visible wavelength region and near-infrared region for sample annealing on glass substrate. The optical gap of the film were calculated from the curve of absorption coefficient (αhν) 2 vs. hν and was found tobe 3.6 eV at substrate temperature 5
... Show MoreIn this paper, we propose a new and efficient ferroelectric nanostructure metal oxide lithium niobate [(Li1.075Nb0.625Ti0.45O3), (LNTO)] solid film as a saturable absorber (SA) for modulating passive Q-switched erbium-doped fiber laser (EDFL). The SA is fabricated as a nanocomposite solid film by the drop-casting process in which the LNTO is planted within polyvinylidene fluoride-trifluoroethylene [P(VDF-TrFE)] as host copolymer. The optical and physical characteristics of the solid film are experimentally established. The SA is incorporated within the cavity of EDFL to examine its capability for producing multi-wavelength laser. The experimental results proved that a multi-wavelength laser is produced, where stable four lines with central
... Show More