Two-dimensional crystal has been achieved and controlled
with the aid of DC electric field applied between two electrodes at 5
millimeters separating distance between them. Sol-gel method has
been used to prepared nanosilica particle which used in this work as
well as TiO2 nanopaowder. The assembly of the silica particles is
due to the interaction between the electrical force, the particles
dipole, and the interaction between the particles themselves. When a
DC voltage is applied, the particles accumulated and crystallized on
the surface between the electrodes. The Light diffraction
demonstrates that the hexagonal crystal is always oriented with one
axis along the direction of the field. The particles disassemble when
the field is turned off, and the process can be repeated many times.
The diffraction patterns from all consecutively formed crystals are
identical. This assembly is driven by forces that depend on the
electric field gradient; the process can be controlled via the external
field strength, and the viscosity of the liquid media.
Sustainability including renewable energy and green power, is one of the important feature in recent years due to environmental constraints and the emission of CO2 from fossil fuel. Pressure retarded osmosis (PRO) process is considered one of the effective technology for power generation. This study assessed the application of pressure retarded osmosis to produce power from Tigris River water in Baghdad City, Iraq. Spiral wound TFC membrane was tested in the PRO process with different variables. The effect of different types of draw solutions (MgCl2, NaCl, Sodium Formate, KCl, Sodium Acetate), applied pressure (0 – 7 bar), and draw solution concentration (0.08 and 0.4 M) were tested in this work. The flux, recovery, and power density for
... Show MoreOptimizing system performance in dynamic and heterogeneous environments and the efficient management of computational tasks are crucial. This paper therefore looks at task scheduling and resource allocation algorithms in some depth. The work evaluates five algorithms: Genetic Algorithms (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Firefly Algorithm (FA) and Simulated Annealing (SA) across various workloads achieved by varying the task-to-node ratio. The paper identifies Finish Time and Deadline as two key performance metrics for gauging the efficacy of an algorithm, and a comprehensive investigation of the behaviors of these algorithms across different workloads was carried out. Results from the experiment
... Show MoreWith its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques. T
... Show MoreAlthough the number of stomach tumor patients reduced obviously during last decades in western countries, but this illness is still one of the main causes of death in developing countries. The aim of this research is to detect the area of a tumor in a stomach images based on fuzzy clustering. The proposed methodology consists of three stages. The stomach images are divided into four quarters and then features elicited from each quarter in the first stage by utilizing seven moments invariant. Fuzzy C-Mean clustering (FCM) was employed in the second stage for each quarter to collect the features of each quarter into clusters. Manhattan distance was calculated in the third stage among all clusters' centers in all quarters to disclosure of t
... Show More
XML is being incorporated into the foundation of E-business data applications. This paper addresses the problem of the freeform information that stored in any organization and how XML with using this new approach will make the operation of the search very efficient and time consuming. This paper introduces new solution and methodology that has been developed to capture and manage such unstructured freeform information (multi information) depending on the use of XML schema technologies, neural network idea and object oriented relational database, in order to provide a practical solution for efficiently management multi freeform information system.
The distribution of the expanded exponentiated power function EEPF with four parameters, was presented by the exponentiated expanded method using the expanded distribution of the power function, This method is characterized by obtaining a new distribution belonging to the exponential family, as we obtained the survival rate and failure rate function for this distribution, Some mathematical properties were found, then we used the developed least squares method to estimate the parameters using the genetic algorithm, and a Monte Carlo simulation study was conducted to evaluate the performance of estimations of possibility using the Genetic algorithm GA.