A high Tc superconductor with a nominal composition
(Bi1-xPbx)2(Sr1-yBay)2Ca2Cu3O10+δ for (0 £ x £ 0.5) and (0 £ y £ 0.5) was prepared by
a solid state reaction method. The effect of the substitution of Pb for Bi and Ba for Sr and
quenching temperature on the superconductivity has been investigated to obtain the
optimum conditions for the formation and stabilization of the high Tc phase (2223).
The results showed that the optimum sintering temperature for the pure composition is
equal to 875°C and the sintering time is equal to 240h with heating and cooling rate of
60°C/h . Our results indicated that a small amount of (Ba = 0.1) could raise the transition
temperature (Tc), but enhancing Ba to 0.4 has raised the resistivity and the behavior of the
composition converted to semiconductor and ultimately for the composition that has (x =
0.4, y = 0.5) was an insulator. The best value of (Tc = 122 K) is for the composition that
has x = 0.2, y = 0.1.On the other side for Ba free samples increasing of lead content up to
0.3 has rise the transition temperature (Tc = 116 K) but more increases to (0.4, 0.5) causes
a decrease in Tc.
The effect of quenching temperature Tq on the transition temperature Tc of the (Bi1-
xPbx)2(Sr1-yBay)2Ca2Cu3O10+δ was also investigated .
When a vehicle is left parked in the sun for an extended period, the gathered heat causes damage to several interiors within the cabin and causes discomfort for people and animals left inside the car. In the present work, the effect of the orientation of a parked white minibus on temperature distribution and cooling load calculation is studied experimentally in an open environment. Two different cases were studied facing south and facing east. For several hours, the temperature inside the car cabin had been monitored and measured at five separate locations. The cooling load calculations are carried out based on the experimental measurements. The results show that the overheating of parked cars always happens as a result
... Show MoreBackground: The healing period for bone–implant contact takes 3–6 months or even longer. Application of Escherichia coli-derived recombinant human bone morphogenetic protein-2 (ErhBMP-2) to implant surfaces has been of great interest on osseointegration due to its osteoinductive potential. The objective of this study was to evaluate the effect of ErhBMP-2 on implant stability. Materials and methods: A total of 48 dental implants were inserted in 15 patients. Twenty four implants coated with 0.5 mg/ml ErhBMP-2 (study group). The other 24 implants were uncoated (control group). Each patient was received at least two dental implants at the same session. Both groups were followed with repeated implant stability measurements by me
... Show MoreNitinol (NiTi) is used in many medical applications, including hard tissue replacements, because of its suitable characteristics, including a close elastic modulus to that of bones. Due to the great importance of the mechanical properties of this material in tissue replacements, this work aims to study the hysteresis response in an attempt to explore the ability of the material to remember its previous mechanical state in addition to its ability to withstand stress and to obtain the optimal dimensions and specifications for the manufacturer of NiTi actuators. Stress-strain examination is done in a computational way using a mutable Lagoudas MATLAB code for various coil radii, environment temperatures, and coil lengths. The computational m
... Show MoreMixing aluminum nitrate nonahydrate with urea produced room temperatures clear colorless ionic liquid with lowest freezing temperature at (1: 1.2) mole ratio respectively. Freezing point phase diagram was determined and density, viscosity and conductivity were measured at room temperature. It showed physical properties similar to other ionic liquids. FT-IR,UV-Vis, 1H NMR and 13C NMR were used to study the interaction between its species where - CO ??? Al- bond was suggested and basic ion [Al(NO3)4]? and acidic ions [Al(NO3)2. xU]+ were proposed. Water molecule believed to interact with both ions. Redox potential was determined to be about 2 Volt from – 0.6 to + 1.4 Volt with thermal stability up to 326 ?.
Abstract The Synthesis in good yields of some new 1,8-Naphthyridine derivatives (1-9) and characterized on the basis of IR and 1H NMR spectra data. The compounds (1) and (6) were utilized as a starting material for the preparing of these compounds.
In this work, nanostructured TiO2 thin films were grown by pulsed laser deposition (PLD) technique on glass substrates. TiO2 thin films then were annealed at 400-600 °C in air for a period of 2 hours. Effect of annealing on the structural and morphological were studied. Many growth parameters have been considered to specify the optimum conditions, namely substrate temperature (300 °C), oxygen pressure (10-2 Torr), laser fluence energy density (0.4 J/cm2), using double frequency Q-switching Nd:YAG laser beam (wavelength 532nm), repetition rate (1-6 Hz) and the pulse duration of 10 ns. The results of the X-ray test show that all nanostructures tetragonal are polycrystalline. These results show that grain size increase fr
... Show MoreThis work describes, selenium (Se) films were deposited on clean glass substrates by dc planar magnetron sputtering technique.The dependence of sputtering deposition rate of Se film deposited on pressure and DC power has been studied. The optimum argon pressure has range (4x10-1 -8x10-2 )mbar. The optical properties such as absorption coefficient (α) was determined using the absorbance and transmission measurement from UnicoUV-2102 PC spectrophotometer, at normal incidence of light in the wavelength range of 200-850 nm. And also we calculated optical constants(refractive index (n), dielectric constant (εi,r), and Extinction coefficient (κ) for selenium films.
The energy density state are the powerful factor for evaluate the validity of a material in any application. This research focused on examining the electrical properties of the Se6Te4- xSbx glass semiconductor with x=1, 2 and 3, using the thermal evaporation technique. D.C electrical conductivity was used by determine the current, voltage and temperatures, where the electrical conductivity was studied as a function of temperature and the mechanical electrical conduction were determined in the different conduction regions (the extended and localized area and at the Fermi level). In addition, the density of the energy states in these regions is calculated using the mathematical equations. The constants of energy density states are det
... Show More