Gray-Scale Image Brightness/Contrast Enhancement with Multi-Model
Histogram linear Contrast Stretching (MMHLCS) method
The proposal of nonlinear models is one of the most important methods in time series analysis, which has a wide potential for predicting various phenomena, including physical, engineering and economic, by studying the characteristics of random disturbances in order to arrive at accurate predictions.
In this, the autoregressive model with exogenous variable was built using a threshold as the first method, using two proposed approaches that were used to determine the best cutting point of [the predictability forward (forecasting) and the predictability in the time series (prediction), through the threshold point indicator]. B-J seasonal models are used as a second method based on the principle of the two proposed approaches in dete
... Show MoreBackground: Accurate measurement of a patient’s height and weight is an essential part of diagnosis and therapy, but there is some controversy as to how to calculate the height and weight of patients with disabilities. Objective: This study aims to use anthropometric measurements (arm span, length of leg, chest circumference, and waist circumference) to find a model (alternatives) that can allow the calculation of the height and the body weight of patients with disabilities. Additionally, a model for the prediction of weight and height measurements of patients with disabilities was established. Method: Four hander patients aged 20-80 years were enrolled in this study and divided into two groups, 210 (52.5%) male and 190 (47.5%) fe
... Show MoreIn this paper, we established a mathematical model of an SI1I2R epidemic disease with saturated incidence and general recovery functions of the first disease I1. Considering the basic reproduction number, we obtained conditions for both disease-free and co-existing cases. The equilibrium points local stability is verified by using the Routh-Hurwitz criterion, while for the global stability, we used a suitable Lyapunov function to analyze the endemic spread of the positive equilibrium point. Moreover, we carried out the local bifurcation around both equilibrium points (disease-free and co-existing), where we obtained that the disease-free equilibrium point undergoes a transcritical bifurcation. We conduct numerical simulations that suppo
... Show MoreThe aim of this study is to utilize the behavior of a mathematical model consisting of three-species with Lotka Volterra functional response with incorporating of fear and hunting cooperation factors with both juvenile and adult predators. The existence of equilibrium points of the system was discussed the conditions with variables. The behavior of model referred by local stability in nearness of any an equilibrium point and the conditions for the method of approximating the solution has been studied locally. We define a suitable Lyapunov function that covers every element of the nonlinear system and illustrate that it works. The effect of the death factor was observed in some periods, leading to non-stability. To confirm the theore
... Show MoreFor a mathematical model the local bifurcation like pitchfork, transcritical and saddle node occurrence condition is defined in this paper. With the existing of toxicity and harvesting in predator and prey it consist of stage-structured. Near the positive equilibrium point of mathematical model on the Hopf bifurcation with particular emphasis it established. Near the equilibrium point E0 the transcritical bifurcation occurs it is described with analysis. And it shown that at equilibrium points E1 and E2 happened the occurrence of saddle-node bifurcation. At each point the pitch fork bifurcation occurrence is not happened.
In this research، a comparison has been made between the robust estimators of (M) for the Cubic Smoothing Splines technique، to avoid the problem of abnormality in data or contamination of error، and the traditional estimation method of Cubic Smoothing Splines technique by using two criteria of differentiation which are (MADE، WASE) for different sample sizes and disparity levels to estimate the chronologically different coefficients functions for the balanced longitudinal data which are characterized by observations obtained through (n) from the independent subjects، each one of them is measured repeatedly by group of specific time points (m)،since the frequent measurements within the subjects are almost connected an
... Show MoreCoronavirus disease (COVID-19) is an acute disease that affects the respiratory system which initially appeared in Wuhan, China. In Feb 2019 the sickness began to spread swiftly throughout the entire planet, causing significant health, social, and economic problems. Time series is an important statistical method used to study and analyze a particular phenomenon, identify its pattern and factors, and use it to predict future values. The main focus of the research is to shed light on the study of SARIMA, NARNN, and hybrid models, expecting that the series comprises both linear and non-linear compounds, and that the ARIMA model can deal with the linear component and the NARNN model can deal with the non-linear component. The models
... Show MoreIn this work the strain energy of tetrahedrane and its nitrogen substituted molecules were calculated by isodesmic reaction method according to DFT quantum chemical fashion, the used basis set was 6-31G/B3-LYP, in addition all structures were optimized by RM1 semi-empirical method. From the obtained data we estimate an empirical equation connect between strain energy of the molecule with charge functions represented by dipole moment of the molecule plus accumulated charge density involved within the tetrahedron frame plus the number of nitrogen atoms. The results indicate the charge spreading factors by polarization and processes are the most important factors in decreasing the strain energy.
This paper considers a new Double Integral transform called Double Sumudu-Elzaki transform DSET. The combining of the DSET with a semi-analytical method, namely the variational iteration method DSETVIM, to arrive numerical solution of nonlinear PDEs of Fractional Order derivatives. The proposed dual method property decreases the number of calculations required, so combining these two methods leads to calculating the solution's speed. The suggested technique is tested on four problems. The results demonstrated that solving these types of equations using the DSETVIM was more advantageous and efficient