In this work, two groups of nanocomposite material, was prepared from unsaturated polyester resin (UPE), they were prepared by hand lay-up method. The first group was consisting of (UPE) reinforced with individually (ZrO2) nanoparticles with particle size (47.23nm). The second group consists of (UPE) reinforced with hybrid nanoparticles consisting of zirconium oxide and yttrium oxide (70% ZrO2 + 30% Y2O3) with particles size (83.98nm). This study includes the effect of selected volume fraction (0.5%, 1%, 1.5%, 2%, 2.5%, 3%) for both reinforcement nano materials. Experimental investigation was carried out by analyzing the thermo-physical properties like thermal conductivity, thermal diffusivity and specific heat for the polymeric composites samples, as well as the hardness test. The results showed that the values of (hardness, specific heat) increased as the nanoparticle content in composite samples increased for both groups’ nanocomposites, whereas the values of thermal conductivity and thermal diffusion decrease for both groups composites. And it was found that the properties of composite materials reinforced by hybrid nanoparticles have higher properties as compared with their counterparts of other nanocomposite reinforced by zirconia nanoparticle. The morphology of the fracture surface was showed homogeneous micro structure formation for both groups composites, indicating a good compatibility between the matrix material and the reinforcement nanoparticles.
Background: Even the wide use of dental implants, still there is a proportion of implants are failed due to infection. Much considerable attention has been paid to modify the implant surface. Coating of dental implant with a biocomposite material of suitable properties can improve osseointegration. And this is the main concern of this study. The aim of present study was to evaluate the use of a biocomposite coating of dental implant with (ceramic nano Al2O3 and metalic AgNo3) on the bond strength at bone – implant interface and tissue reaction. Materials and methods: A total number of forty-eight screws, CpTi dental implant used in this study. Half of these screws were coated with a biocomposite material of nano (Al2O3and AgNo3), thi
... Show MoreAbstract
For sparse system identification,recent suggested algorithms are -norm Least Mean Square (
-LMS), Zero-Attracting LMS (ZA-LMS), Reweighted Zero-Attracting LMS (RZA-LMS), and p-norm LMS (p-LMS) algorithms, that have modified the cost function of the conventional LMS algorithm by adding a constraint of coefficients sparsity. And so, the proposed algorithms are named
-ZA-LMS,
Machine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 a
... Show MoreThe rise in the general level of prices in Iraq makes the local commodity less able to compete with other commodities, which leads to an increase in the amount of imports and a decrease in the amount of exports, since it raises demand for foreign currencies while decreasing demand for the local currency, which leads to a decrease in the exchange rate of the local currency in exchange for an increase in the exchange rate of currencies. This is one of the most important factors affecting the determination of the exchange rate and its fluctuations. This research deals with the currency of the European Euro and its impact against the Iraqi dinar. To make an accurate prediction for any process, modern methods can be used through which
... Show MoreMonaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi
... Show MoreNurse scheduling problem is one of combinatorial optimization problems and it is one of NP-Hard problems which is difficult to be solved as optimal solution. In this paper, we had created an proposed algorithm which it is hybrid simulated annealing algorithm to solve nurse scheduling problem, developed the simulated annealing algorithm and Genetic algorithm. We can note that the proposed algorithm (Hybrid simulated Annealing Algorithm(GS-h)) is the best method among other methods which it is used in this paper because it satisfied minimum average of the total cost and maximum number of Solved , Best and Optimal problems. So we can note that the ratios of the optimal solution are 77% for the proposed algorithm(GS-h), 28.75% for Si
... Show MoreSpeech is the essential way to interact between humans or between human and machine. However, it is always contaminated with different types of environment noise. Therefore, speech enhancement algorithms (SEA) have appeared as a significant approach in speech processing filed to suppress background noise and return back the original speech signal. In this paper, a new efficient two-stage SEA with low distortion is proposed based on minimum mean square error sense. The estimation of clean signal is performed by taking the advantages of Laplacian speech and noise modeling based on orthogonal transform (Discrete Krawtchouk-Tchebichef transform) coefficients distribution. The Discrete Kra