In this research, the mechanism of cracks propagation for epoxy/ chopped carbon fibers composites have been investigated .Carbon fibers (5%, 10%, 15%, and 20%) by weight were used to reinforce epoxy resin. Bending test was carried out to evaluate the flexural strength in order to explain the mechanism of cracks propagation. It was found that, the flexural strength will increase with increasing the percentage weight for carbon fibers. At low stresses, the cracks will state at the lower surface for the specimen. Increasing the stresses will accelerate the speed of cracks until fracture accorded .The path of cracks is changed according to the distributions of carbon fibers
The influence of fiber orientation and water absorption on fatigue crack growth resistance for cold cure acrylic (PMMA) reinforced by chopped and woven -glass-fibers were investigated. A weight of 2 g for chopped fibers and the same weight for woven -glass-fibers (one layer) were used to prepare samples. Some of these samples would storage in dry condition; the others were immersed in water for 15 days. Fatigue test was carried out. The results shows that, for PMMA, the initial bending stress for dry specimen was 3.392 N/cm2 and the number of cycles were 1364, the initial bending stress for wet samples was 4.20 N/cm2, and the number of cycles was 2411. The samples would cut in two pieces because of the cracks would propagated fast during
... Show MoreThermal conductivity for epoxy composites filled with Al2O3 and Fe2O3 are
calculated, it found that increasing the weight ratio of Al2O3 and Fe2O3 lead to
increase in the values of thermal conductivity, but the epoxy composite filled with
Fe2O3, have values of thermal conductivity less than for epoxy composite filled with
Al2O3, for the same weight ratio. Also thermal conductivity calculated for epoxy
composites by contact to every two specimens (like sandwich) content same weight
ratio of alumina-oxide and ferrite-oxide, its found that the value of thermal
conductivity lays between the values of epoxy filled Al2O3 and of epoxy filled Fe2O3
In this study a polymeric composite material was prepared by hand
lay-up technique from epoxy resin as a matrix and magnesium oxide
(MgO) as a reinforcement with different weight fraction (5,10,15,
and 20)% to resin. Then the prepared samples were immersed under
normal condition in H2So4(1 M) solution, for periods ranging up to
10 weeks. The result revealed that the diffusion coefficient
decreasing as the concentration of MgO increase. Also we studied
Hardness for the prepared samples before and after immersion. The
result revealed that the hardness values increase as the concentration
of MgO increase, while the hardness for the samples after immersion
in H2SO4 dec
In this work, MWCNT in the epoxy can be prepared at room temperature and thickness (1mm) at different concentration of CNTs powder. Optical properties of multi-walled carbon nanotubes (CNTs) reinforced epoxy have been measured in the range of (300-800)nm. The electronic transition in pure epoxy and CNT/epoxy indicated direct allowed transition. Also, it is found that the energy gap of epoxy is 4.1eV and this value decreased within range of (4.1-3.5)eV when the concentration of CNT powder increased from (0.001-0.1)% respectively.
The optical constants which include (the refractive index (n), the extinction coefficient (k), real (ε1) and imaginarily (ε2) part of dielectric constant calculated in the of (300-800)nm at different concent
In this study a composite materials were prepared containing matrix of polymer blend (Epoxy (EP) 90% + unsaturated polyester (UPS) 10%), (Epoxy (EP) 80% + unsaturated polyester (UPS) 20%), reinforced with Kevlar (K) or, and iron woven (Fe) with one value of volume fraction (30) %. This composite are from: (EP 90%, UPE 10% +K), (EP 90%, UPE 10% +K+Fe), (EP 80%, UPE 20% +K), (EP 80%, UPE 20% +K+Fe). All samples were prepared using hand layup method and then impact test was done in both normal condition and after immersion in tap water for the same period time (eight weeks) also diffusion test was done for period's time (three months). The results showed that had been effected differently after immersion, but specimen (EP80%+UPS20%+K+Fe) ha
... Show MoreThis research studies the effect of addition of some nanoparticles
(MgO, CuO) and grain size (30,40nm) on some physical properties
(impact strength, hardness and thermal conductivity) for a matrix
blend of epoxy resin with SBR rubber. Hand –Lay up method was
used to prepare the samples. All samples were immersed in water for
9 weeks.
The Results showed decreased in the values of impact strength and
hardness but increased the coefficient of thermal conductivity.
In this study, epoxy was used as a matrix for composite materials, with E-glass fiber, jute and PVC fiber which was woven roving fiber, as reinforcement with volume fraction (Vf= 30%). There are two of prepared types of epoxy non reinforced, epoxy reinforced with E-glass, jute and PVC fibers including study of mechanical tests (Impact test, Bending test) different temperature and thermal conductivity and calculating the temperatures coefficient at different temperature. Results show that elastic modulus at rate values decrease to the increase of temperature and the impact strength, impact energy and thermal conductivity increase with increase temperature.
The primary purpose of the present research was to study the effect of polyvinyl chloride (PVC) powder content on ultrasonic wave velocity in PVC/Epoxy composites. The second part is concerned with the relations of dynamic elastic moduli with the ultrasonic wave velocities, to determine how ultrasonic waves can affect them.
Experimental data have been obtained using the sonic viewer (model -5217 A) device to generate two types of waves, longitudinal waves of frequency 63 kHz and transverse waves of frequency 33 kHz and to measure the transit time required for those waves to travel through individual sample.
The experimental results have shown that the propagation of the ultrasonic velocity increases directly with PVC content in the
This research studies Reinforcing and applied load of Wear Rate for Epoxy composites contains from epoxy resin (Ep) as a matrix material and reinforced by Gawain red wood flour , Russian white wood flour , glass powder and rock wool fibers , with volume fraction (20%) for all samples in lab conditions. by using the load (10,20 ,30 ,40) Newton of iron disc for testing time(10) minute, and the results have shown that the reinforcing of epoxy resin led to decrease wear rate for all samples except the hybrid composites reinforced earth glass powder , that the wear rate values decrease from (22×10-9g/cm) to (4×10-9g/cm) of composite material(Ep+R.W.F) and thus(Ep+W.W.F) at la
... Show More