A thin CdS Films have been evaporated by thermal evaporation technique with different thicknesses (500, 1000, 1500 and 2000Å) and different duration times of annealing (60, 120 180 minutes) under 573 K annealing temperature, the vacuum was about 8 × 10-5 mbar and substrate temperature was 423 K. The structural properties of the films have been studied by X- ray diffraction technique (XRD). The crystal growth became stronger and more oriented as the film thickness (T) and duration time of annealing ( Ta) increases.
In this paper, SiO2 nanoparticles thin films were synthesised at different PH values of solution by sol gel method at fixed temperature (25oC) and molar ratio (R =H2O/precursor) of (Tetra Ethyl Ortho Silicate) TEOS as precursor at (R=1). The structure and optical properties of the thin films have been investigated. All thin films were tested by using X-RAY diffraction. All X-RAY spectrum can be indexed as monoclinic structure with strong crystalline (110) plane. The morphological properties of the prepared films were studied by SEM. The results indicate that all films are in nano scale and the particle size around (19-62) nm .The size of silica particles increases with increasing PH value of solution where both the rate of hydrolysis and
... Show MoreVanadium dioxide nanofilms are one of the most essential materials in electronic applications like smart windows. Therefore, studying and understanding the optical properties of such films is crucial to modify the parameters that control these properties. To this end, this work focuses on investigating the opacity as a function of the energy directed at the nanofilms with different thicknesses(1–100) nm. Effective mediator theories(EMTs), which are considered as the application of Bruggeman’s formalism and the Looyenga mixing rule, have been used to estimate the dielectric constant of VO2 nanofilms. The results show different opacity behaviors at different wavelength ranges(ultraviolet, visible, and infrared). The results depict that th
... Show Morein this paper, the current work was devoted to the manufacture of TiO2 nanoparticles doped with manganese, synthesis by the sol-gel technique using a dip-conting device, for their hydrophilic properties and photocatalytic activity, and the products were characterized by X-ray diffraction, scanning electron microscopy, and Uv-Visible absorption, and the results XRD showed an phase Anatase , and the results of the SEM Explained the shape of the morphology of the samples after the doping process compared with pure TiO2, and the results of a shift in light absorption from ultraviolet rays to visible light were evident. The results showed that the thin films have a high wettability under visible rays
... Show MoreIn this study, Epoxy Resin plates was prepared by mixing epoxy(A) and hardner(B)with ratio(A:B) (3:1) with different thickness (0.3-0.96)cm. The effect of thickness on optical properties have been studied (absorption ,transmission ,reflectance) also the optical constant were found like (absorption coefficient, extenuation coefficient and refraction index) for all of the prepared plates. The results have shown that by increasing the thickness of plates., the absorption intensity increase in which at plates thickness (0.3-0.96)cm the absorption intensity were(1.54-1.43) respectively, and since absorption peak for epoxy occur in ultraviolet region and exactly at wavelength(368)nm and energy gap(Eg=3.05 eV) thus their good transmittance in the
... Show MoreIn this paper deals with the effect laser irradiation on the optical properties of cobalt oxide (CoO2) thin films and that was prepared using semi computerized spray pyrolysis technique. The films deposited on glass substrate using such as an ideal value concentration of (0.02)M with a total volume of 100 ml. With substrate temperature was (350 C), spray rate (15 ml/min).The XRD diffraction given polycrystalline nature with Crystal system trigonal (hexagonal axes). The obtained films were irradiated by continuous green laser (532.8 nm) with power 140 mW for different time periods is 10 min,20min and 30min. The result was that the optical properties of cobalt oxide thin films affe
Generally the a.c. conductivity shows a power law in frequency s () where the exponent s ≤ 1. As the frequency goes to zero the conductivity become frequency independent. The a.c. conductivity was studied for the Ge1-xSex thin films to see how the selenium contents affect the permittivity and the permeability for the Ge1-x Sex. The thin films prepared by thermal evaporation at room temperature and under vacuum (~2 x10-5toor) using Edward coating unit model 306A. From the relation between ln conductivity and ln w, the effect of selenium contents in Ge1-x Sex thin films on the exponent value, the relaxation time and the maximum barrier height. An algebric fitting method for circles and circular arcs was used to find the permit
... Show MoreThe effect of high energy radiation on the energy gap of compound semiconductor Silicon Carbide (SiC) are viewed. Emphasis is placed on those effects which can be interpreted in terms of energy levels. The goal is to develop semiconductors operating at high temperature with low energy gaps by induced permanent damage in SiC irradiated by gamma source. TEACO2 laser used for producing SiC thin films. Spectrophotometer lambda - UV, Visible instrument is used to determine energy gap (Eg). Co-60, Cs-137, and Sr-90 are used to irradiate SiC samples for different time of irradiation. Possible interpretation of the changing in Eg values as the time of irradiation change is discussed
In this study, SnS thin films were deposited onto glass substrate by thermal evaporation technique at 300K temperature. The SnS films have been prepared with different thicknesses (100,200 &300) nm. The crystallographic analysis, film thickness, electrical conductivity, carrier concentration, and carrier mobility were characterized. Measurements showed that depending on film thickness. The D.C. conductivity increased with increase in film thickness from 3.720x10-5 (Ω.cm)-1 for 100 nm thickness to 9.442x10-4 (Ω.cm)-1 for 300 nm thicknesses, and the behavior of activation energies, hall mobility, and carrier concentration were also studied.