Dust samples have been collected from three areas in Baghdad during dust storm occurred in 18th of June 2009 to characterize elemental particle size and composition by different techniques. The x-ray diffraction detected six minerals those are calcite, and quartz, present as a major components, dolomite, kaolinite, gypsum and plagioclase present as miner components .EDX detected some normal elements presented in local soil except traces of lead , nickel, and chromium. The particle size analysis by a set of sieves have revealed that the majority particle distribution was between (32 and 45)μm . To isolate the aerosol size, PM10 buoyancy method of powder in water showed a signifying amounts of particulate size .Scheerer’s method was applied to estimate the sizes of those particulate for quartz and calcite mineral .The estimation crystallite size of those separated particle was occur between (30 -55) nm for quartz and between (10 – 20) nm for calcite .Those sizes are highly affected the respiratory system of the human and even the animals .
PH measured values gave slightly alkaline (PH=7.8), and this value might affect on the plant nutrition.
Photodetector based on Rutile and Anatase TiO2 nanostructures/n-Si Heterojunction
The drones have become the focus of researchers’ attention because they enter into many details of life. The Tri-copter was chosen because it combines the advantages of the quadcopter in stability and manoeuvrability quickly. In this paper, the nonlinear Tri-copter model is entirely derived and applied three controllers; Proportional-Integral-Derivative (PID), Fractional Order PID (FOPID), and Nonlinear PID (NLPID). The tuning process for the controllers’ parameters had been tuned by using the Grey Wolf Optimization (GWO) algorithm. Then the results obtained had been compared. Where the improvement rate for the Tri-copter model of the nonlinear controller (NLPID) if compared with
Crime is a threat to any nation’s security administration and jurisdiction. Therefore, crime analysis becomes increasingly important because it assigns the time and place based on the collected spatial and temporal data. However, old techniques, such as paperwork, investigative judges, and statistical analysis, are not efficient enough to predict the accurate time and location where the crime had taken place. But when machine learning and data mining methods were deployed in crime analysis, crime analysis and predication accuracy increased dramatically. In this study, various types of criminal analysis and prediction using several machine learning and data mining techniques, based o
This study looks into the many methods that are used in the risk assessment procedure that is used in the construction industry nowadays. As a result of the slow adoption of novel assessment methods, professionals frequently resort to strategies that have previously been validated as being successful. When it comes to risk assessment, having a precise analytical tool that uses the cost of risk as a measurement and draws on the knowledge of professionals could potentially assist bridge the gap between theory and practice. This step will examine relevant literature, sort articles according to their published year, and identify domains and qualities. Consequently, the most significant findings have been presented in a manne
... Show MoreSome of the issues that have become common in our society recently after the Americans entered our country and were rubbed by some security agencies: obtaining some information from children, and the serious consequences that may lead to the lives of innocent people, became common interrogation of some security agencies and rely on their words.
There are significant cases where their testimony needs to be heard, such as their presence in some places where incidents are not witnessed by others, such as schools or being witnesses to certain crimes.
I saw the study of this case in the light of Sharia and law
Fuzzy logic is used to solve the load flow and contingency analysis problems, so decreasing computing time and its the best selection instead of the traditional methods. The proposed method is very accurate with outstanding computation time, which made the fuzzy load flow (FLF) suitable for real time application for small- as well as large-scale power systems. In addition that, the FLF efficiently able to solve load flow problem of ill-conditioned power systems and contingency analysis. The FLF method using Gaussian membership function requires less number of iterations and less computing time than that required in the FLF method using triangular membership function. Using sparsity technique for the input Ybus sparse matrix data gi
... Show MoreDisease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature
... Show MoreWe study in this paper the composition operator of induced by the function ?(z)=sz+t where , and We characterize the normal composition operator C? on Hardy space H2 and other related classes of operators. In addition to that we study the essential normality of C? and give some other partial results which are new to the best of our knowledge.