One of the most important problems facing the world today is the energy problem. The solution was in finding renewable energy sources such as solar energy. The solar energy applications in Iraq is facing many problems . One of the most important problems is the accumulation of dust on the solar panels surface which causes decreasing its performance sharply. In the present work, a new technique was presented by using two-axis solar tracking system to reduce the accumulated dust on the solar panel surface and compared it with the fixed solar panels which installed at tilt angles 30° and 45°. The results indicated that the maximum losses of the output power due to accumulation of dust on the fixed solar panels is about 31.4% and 23.1% respectively for 34 days period of accumulation(from 18-2-2010 to 25-3-2010), while the maximum losses of output power for the solar panel with two-axis tracking system is about 8.5% for the same period of accumulation
Background: planter fasciitis is a common condition
seen in adults and sport men, it is characterized by dull
pain in the heel, especially when getting up and
standing on the foot in the morning or after sitting for a
long time.
Recently low level laser therapy is used as a method of
treatment.
Objective: to evaluate the benefit of laser therapy in
treatment of planter fasciitis.
Methods: Out of twenty five patients with planter
fasciitis exposed to laser therapy. Laser used is (diode
type) given in two cessions per week for four weeks,
time for each cession is about (12 minutes).
Results: complete recovery seen in (32%) of patients,
moderate improvement in (16%), mild improvement in
(24%), no
An innovative desalination method called electrosorption or capacitive deionization (CDI) has significant benefits for wastewater treatment. This process is performed by using a carbon fiber electrode as a working electrode to remove hexavalent chromium ions from an aqueous solution. The pH, NaCl concentration, and cell voltage were optimized using the Box-Behnken experimental design (BDD) in response surface methodology (RSM) to study the effects and interactions of selected variables. To attain the relationship between the process variables and chromium removal, the experimental data were subjected to an analysis of variance and fitted with a quadratic model. The optimum conditions to remove Cr(VI) ions were: pH of 2, a cell voltage of 4.
... Show MorePurpose: To evaluate the effect of different surface treatments on shear bond strength between dentin and IPS e.max lithium disilicate glass-ceramic. Materials and Methods: Eighteen extracted third molars were embeded in epoxy resin. The tooth was sectioned vertically in mesiodistal direction using a low speed hard tissue microtome. The buccal and lingual surfaces of each section were ground flat using 600 grit Silicone carbide paper. Eighteen ceramic discs consisted of lithium disilicate glass-ceramic were prepared with a diameter of 4.7mm and height of 2.2mm. The discs were divided in two groups (n=10): (1) IPS e.max treated with hydrofluoric acid and Monobond Plus (MBP) and (2) IPS e.max treated with Monobond Etch &Prime (MBEP). The toot
... Show MoreDomestic Technique in Batik Art
Objectives: The study aims to evaluate patients’ performance toward insulin injection after training program to
identify the variation in skill of patients in insulin injection technique with regard to some variable (i.e.
educational level and duration of insulin injection.
Methodology: A quasi experimental study has been conducted on diabetic patients.
An observational checklist had been prepared which consisted of 4 main areas with 37 sub-items, which are
syringe preparation for injection, insulin drawing; skin preparation for injection and insulin injection. Each of the
sub-items has 2 options yes or no. One score for positive answer and zero for no.
The sample of the study consisted of (n =30) males and females
High-resolution imaging of celestial bodies, especially the sun, is essential for understanding dynamic phenomena and surface details. However, the Earth's atmospheric turbulence distorts the incoming light wavefront, which poses a challenge for accurate solar imaging. Solar granulation, the formation of granules and intergranular lanes on the sun's surface, is important for studying solar activity. This paper investigates the impact of atmospheric turbulence-induced wavefront distortions on solar granule imaging and evaluates, both visually and statistically, the effectiveness of Zonal Adaptive Optics (AO) systems in correcting these distortions. Utilizing cellular automata for granulation modelling and Zonal AO correction methods,
... Show MoreIn this paper, an experimental study of the thermal performance for hybrid solar air conditioning system was carried out, to investigate system suitability for the hot climate in Iraq. The system consists of vapor compression unit combined with evacuated tube solar collector and liquid storage tank. A three-way valve was installed after the compressor to control the direction flow of the refrigerant, either to the storage tank or directly to the condenser. The performance parameters were collected by data logger to display and record in the computer by using LabVIEW software. The results show that the average coefficient of performance of hybrid solar air conditioning system (R=1) was about 2.42 to 2.77 and the average p
... Show MoreIn this work, a novel single-slope solar distillator of floating perforated absorber inserted with wicks (cotton ribbons), and a stepped distillator are designed and manufactured with the aim of developing the conventional distillator. They are examined experimentally at Baghdad, Iraq (33.3°N Latitude, 44.4°E Longitude) in order to enhance the freshwater productivity and the efficiency of the conventional distillator. Results showed that the daily productivity and efficiency of the stepped distillator are higher than that for conventional solar distillator by 30% and 36.19% respectively. The daily productivity and thermal efficiency for the distillator with the floating absorber are higher than that for the conventional distillator by 16%
... Show MoreHeat transfer process and fluid flow in a solar chimney used for natural ventilation are investigated numerically in the present work. Solar chimney was tested by selecting different positions of absorber namely: at the back side, front side, and at the middle of the air gap. CFD analysis based on finite volume method is used to predict the thermal performance, and air flow in two dimensional solar chimney under unsteady state condition, to identify the effect of different parameters such as solar radiation. Results show that a solar chimney with absorber at the middle of the air gap gives better ventilation performance. A comparison between the numerical and previous experimental results shows fair agreement.