In this paper, A.C conductivity of micro and nano grain size- TiO2 filled epoxy composites is measured. The dielectric material used is epoxy resin, while micro and nano-sized titanium dioxide (TiO2) of grain size (1.5μm, and 50nm) was used as filler at low filler concentrations by weight (3%, and 5%). Additionally the effect of annealing temperature range (293-373)º K and at a frequency range of 102-106 Hz on the A.C conductivity of the various specimens was studied.
The result of real permittivity for micro and nanocomposite show that the real permittivity increases with decreasing frequency at range of 102-106Hz. The micron-filled material has a higher real relative permittivity than the nano-filled this is true at all the temperatures measured.
The variation of the A.C conductivity with frequency for micro and nanocomposites shows that A.C conductivity for all samples increase with increasing frequency and the temperature dependence on the A.C conductivity increases as the frequency decrease
Nanotechnology is a continually expanding field for its uses and applications in multiple areas i.e. medicine, science, and engineering. Biosynthesis is straightforward, less-toxicity, and cost-effective technology. TiO2 NPs biosynthesis has attained consideration in recent decades. In this study, probiotic bacteria were isolated from cow’s raw milk samples, and then were identified by using the Vitek2 system; as Leuconostoc spp. included Leuconostoc mesenteroides subsp. mesenteroides (Leu.1), Leuconostoc mesenteroides subsp. cremoris (Leu.4), and Leuconostoc pseudomesenteroides (Leu.14). All Leuconostoc spp. isolates showed an ability for TiO2 NPs bio-production, after being incubated at anaerobic conditions (30 o C/ 24 h) in DeM
... Show MoreIn this research, titanium dioxide nanoparticles (TiO2 NPs) were prepared through the sol-gel process at an acidic medium (pH3).TiO2 nanoparticles were prepared from titanium trichloride (TiCl3) as a precursor with Ammonium hydroxide (NH4OH) with 1:3 ratio at 50 °C. The resulting gel was dried at 70 °C to obtain the Nanocrystalline powder. The powder from the drying process was treated thermally at temperatures 500 °C and 700 °C. The crystalline structure, surface morphology, and particle size were studied by using X-ray diffraction (XRD), Atomic Force Microscopy (AFM), and Scanning Electron Microscope (SEM). The results showed (anatase) phase of titanium dioxide with the average grain size
... Show MoreI mpact strength for Epoxy/Polyurethane, Blends and their composites with two
layers of Glass fibers (0-90) are calculated.
The impact strength of the blends and composites decrease with increasing weight
by weisht percentage of polyurethane . This result is attributed to the high elasticity
of PU , and to the immiscibility between the polymer blends as well as the fiber
delaminates
|
Ferrite with the general formula CuLayFe2-yO4 (where y=0.02, 0.04, 0.06, 0.08 and 0.1), were prepared by standard ceramic technique. The main cubic spinel structure phase for all samples was confirmed by x-ray diffraction patterns with the appearance of small amount of secondary phases. The lattice parameter results were 8.285-8.348 Å. X-ray density increased with La addition and showed values between 5.5826 – 5.7461gm/cm3. The Atomic Force Microscopy (AFM) showed that the average grain size was decreasing with the increase in La concentration. The Hall coefficient was found to be positive. It de |
In this study, polymeric coating was developed by incorporating nano graphene in the polymer blend with applications to oil storage tanks. The oil storage tanks samples were brought from the oil Pipeline Company / Doura refinery in Baghdad. The coating polymer was formed with a blend (epoxy resin and repcoat ZR). The proportion of mixing the mixture was 3:1:1 epoxy resin 21.06 gm: repcoat ZR 10.53 gm: hardener 10.53 gm. The blend/graphene was prepared using in stui-polymerization method with different weight percentage 1, 3, 5, and 7 wt % added to blend. The resulting solution was put in a glass tube on a magnetic stirrer for one hour at a temperature of 40 °C. The result of contact angle and water absorption the best ratio of 3wt
... Show More