In this study the thermal conductivity of the epoxy composites were characterized as function of volume fraction, particle size of fillers and the time of immersion(30,60,90)days in water .Composites plates were prepared by incorporating (bi-directional) (0º-90º) glass fiber and silicon carbide (SiC) particles of (0.1,0.5,1)mm as particle size at (10%,20%,30%,40%) percent volume in epoxy matrix.
The composites shows slightly increase of the thermal conductivity with increasing volume fraction, particle size and increase with increasing the days of immersion in water. The maximum thermal conductivity (0.51W/m.K) was obtained before the immersion in water at 90 days for epoxy reinforcement by bi-directional glass fiber and SiC particles with volume fraction 40% and particle size 1mm
Aim: surface modification of titanium using fiber laser 1064 nm to enhance the bond strength to resin cement. Material and Methods: thirty titanium discs of 0.6 cm x 0.3 cm (diameter and thickness respectively) were categorized after preparation into three groups (n=10) as follows: control group with no surface treatment and two test groups were treated with fiber laser after estimation the appropriate parameters in the pilot study which are 81 ns pulse duration, 30,000 Hz frequency, 50 µm spot size and 10,000 mm/s scanning speed and different average power values (10 W and 20 W) depending on the tested group. Titanium discs surface characterization was performed by scanning electron microscope (SEM), a
... Show MoreIn this paper We introduce some new types of almost bi-periodic points in topological bitransfprmation groups and thier effects on some types of minimaliy in topological dynamics
The optimum design is characterized by structural concrete components that can sustain loads well beyond the yielding stage. This is often accomplished by a fulfilled ductility index, which is greatly influenced by the arrangement of the shear reinforcement. The current study investigates the impact of the shear reinforcement arrangement on the structural response of the deep beams using a variety of parameters, including the type of shear reinforcement, the number of lacing bars, and the lacing arrangement pattern. It was found that lacing reinforcement, as opposed to vertical stirrups, enhanced the overall structural response of deep beams, as evidenced by test results showing increases in ultimate loads, yielding, and cracking of
... Show MoreThe optimum design is characterized by structural concrete components that can sustain loads well beyond the yielding stage. This is often accomplished by a fulfilled ductility index, which is greatly influenced by the arrangement of the shear reinforcement. The current study investigates the impact of the shear reinforcement arrangement on the structural response of the deep beams using a variety of parameters, including the type of shear reinforcement, the number of lacing bars, and the lacing arrangement pattern. It was found that lacing reinforcement, as opposed to vertical stirrups, enhanced the overall structural response of deep beams, as evidenced by test results showing increases in ultimate loads, yielding, and cracking of
... Show MoreTwo different polyvinyl alcohol/polyvinyl chloride (PVA/PVC) hollow fiber composite nanofiltration membranes were prepared after PVC hollow fiber membranes were coated using dip-coating method with PVA aqueous solution, which was composed of PVA, fatty alcohol polyoxyethylene ether (AEO9), and water [PVA/AEO9/water (4:0.5:95.5) wt%]. Effect of two different PVC hollow fiber immersion times in coating solution were studied. Cross-section, internal and external surfaces of the PVC hollow fibers and PVA/PVC composite nanofiltration membranes structures were characterized by scanning electron microscopy (SEM), pure water permeation flux and solutes rejection. It was found that, the coating layer thickness on the outer surface of the 19 wt% P
... Show MoreWe aimed to examine the effect of amoxicillin and azithromycin suspensions on the microhardness of sliver-reinforced glass ionomer and nano-resin modified glass ionomer (GI). Method: Thirty discs (2mm height x 4mm diameter) of each type of GI were prepared, which were randomly assigned to amoxicillin, azithromycin, and artificial saliva groups. Microhardness was evaluated by Vickers hardness test before and after three immersion cycles. Results: The overall model (P < 0.001), before/after intervention (P < 0.001), intervention group (type of antibiotic) (P=0.013), and type of glass ionomer (P < 0.001) showed significant differences among study groups (P < 0.001). Post hoc test showed only non-significant before/after difference for Azithrom
... Show MoreThe use of bio-fruit waste has more attention in recent years because of the low cost of bio-fibers and the protection of the environment. In this study, the epoxy was reinforced with fruit residues (cantaloupe peel powder) in proportions (1%, 2%, 3%, 4%, 5%, 7.5%, and 10% by weight) as results of mechanical tests such as impact, hardness, flexural and compression.
Adding sub microns particle size cantaloupe peels particles with a weight ratio of 7.5% improves the epoxy mechanical properties, like impact strength, hardness, flexural strength, and compression strength by 59.43%, 5.8%, 45.7%, and 118.2%, respectively.
Using X-ray diffraction, the crystallite size ( D) of cantaloupe peel the powder was about (3 nm).
In
... Show Moreِabstract:In this research we prepared nanofibers by electrospinning from poly (Vinyl Alcohol) /TiO2. The spectrum of the solution (Emission) was studied and found to be at 772 nm, several process parameters were such as concentration of TiO2 , and the effect of distance from nozzle tip to the grounded collector (gap distance). The result of the lower concentration of, the smaller the diameter of nanofiber is. Increasing the gap distance will affect nanofibers diameter.