In this paper Alx Ga1-x As:H films have been prepared by using new deposition method based on combination of flash- thermal evaporation technique. The thickness of our samples was about 300nm. The Al concentration was altered within the 0 x 40.
The results of X- ray diffraction analysis (XRD) confirmed the amorphous structure of all AlXGa1-x As:H films with x 40 and annealing temperature (Ta)<200°C. the temperature dependence of the DC conductivity GDC with various Al content has been measured for AlXGa1-x As:H films.
We have found that the thermal activation energy Ea depends of Al content and Ta, thus the value of Ea were approximately equal to half the value of optical gap.
BixSb2-xTe3 alloys with different ratios of Bi (x=0, 0.1, 0.3, 0.5, and 2) have been prepared, Thin films of these alloys were prepared using thermal evaporation method under vacuum of 10-5 Torr on glass substrates at room temperature with different deposition rate (0.16, 0.5, 0.83) nm/sec for thickness (100, 300, 500) respectively. The X–ray diffraction measurements for BixSb2-xTe3 bulk and thin films indicate the polycrystalline structure with a strong intensity of peak of plane (015) preferred orientation with additional peaks, (0015) and (1010 ) reflections planes, which is meaning that all films present a very good texture along the (015) plane axis at different intensities for each thin film for different thickness. AFM measureme
... Show MoreThis research studies the development and synthesis of blended nanocomposites filled with Titanium dioxide (TiO2). Blended nanocomposites based on unsaturated polyester resin (UPR) and epoxy resins were synthesized by reactive blending. The optimum quantity from nano partical of titanium dioxide was selected and different weight proportions 1%, 3%, 5%, and 7% ratios of new epoxy are blended with UPR resin. The dielectric breakdown strength and thermal conductivity properties of the blended nanocomposites were compared with those of the basis material (UPR and 3% TiO2).The results show good compatibility epoxy resins with the UPR resin on blending, dielectric breakdown strength values are higher while thermal conductivity values of
... Show MoreThis research studies the development and synthesis of blended nanocomposites filled with Titanium dioxide (TiO2). Blended nanocomposites based on unsaturated polyester resin (UPR) and epoxy resins were synthesized by reactive blending. The optimum quantity from nano partical of titanium dioxide was selected and different weight proportions 1%, 3%, 5%, and 7% ratios of new epoxy are blended with UPR resin. The dielectric breakdown strength and thermal conductivity properties of the blended nanocomposites were compared with those of the basis material (UPR and 3% TiO2).The results show good compatibility epoxy resins with the UPR resin on blending, dielectric breakdown strength values are higher while thermal conductivity values of
... Show MoreIn this paper, the Decomposition method was used to find approximation solutions for a system of linear Fredholm integral equations of the second kind. In this method the solution of a functional equations is considered as the sum of an infinite series usually converging to the solution, and Adomian decomposition method for solving linear and nonlinear integral equations. Finally, numerical examples are prepared to illustrate these considerations.
The structural, optical and electrical properties of ZnS films prepared by vacuum evaporation technique on glass substrate at room temperature and treated at different annealing temperatures (323, 373, 423)K of thickness (0.5)µm have been studied. The structure of these films is determined by X-ray diffraction (XRD). The X-ray diffraction studies show that the structure is polycrystalline with cubic structure, and there are strong peaks at the direction (111). The optical properties investigated which include the absorbance and transmittance spectra, energy band gab, absorption coefficient, and other optical constants. The results showed that films have direct optical transition. The optical band gab was found to be in the range t
... Show MoreThe structural, optical and electrical properties of ZnS films prepared by vacuum
evaporation technique on glass substrate at room temperature and treated at different
annealing temperatures (323, 373, 423)K of thickness (0.5)µm have been studied. The
structure of these films is determined by X-ray diffraction (XRD). The X-ray diffraction
studies show that the structure is polycrystalline with cubic structure, and there are strong
peaks at the direction (111).
The optical properties investigated which include the absorbance and transmittance
spectra, energy band gab, absorption coefficient, and other optical constants. The results
showed that films have direct optical transition. The optical band gab was
The effects of shot peening treatment (SPT) were studied at (10,20, and 30) minutes on the rotating bending fatigue behavior and the behavior of the alloy steel DIN 41Cr4 vibrations. The hardness test, tensile test, constant amplitude fatigue tests, and the vibration measurements were performed on samples with and without cracks at room temperature (RT), also, the fracture surface was examined and analyzed by a Scanning Electron Microscope (SEM). The results of the investigations, for example, Stress to Number of cycles to failure (S-N) curves, fatigue strength improvement factor of 5% to 10%, the decreasing percentage of maximum Fast Fourier Transform (FFT) acceleration of the shot-peened condition were compared to untr
... Show MoreA new tool geometry was used to achieve friction stir spot welding (FSSW) in which the shoulder was designed separately from the rotating pin, and in order to examine weldment strength through the modified tool, a lap joints of AA2024 aluminum alloy plate 1 mm thick were welded successfully by using 6 mm pin diameter and varying process parameters (rotational speeds, tool nose geometry, and depth of tool penetration in the lower welded plate). Experimental tests indicate that the maximum average tensile shear load was 3100 N at the best selected condition. Microstructure examination and micro hardness test along the spot zones were investigated as well as measuring pin penetration load. Visual inspection of the welded spot surface shows a g
... Show More