Different ANN architectures of MLP have been trained by BP and used to analyze Landsat TM images. Two different approaches have been applied for training: an ordinary approach (for one hidden layer M-H1-L & two hidden layers M-H1-H2-L) and one-against-all strategy (for one hidden layer (M-H1-1)xL, & two hidden layers (M-H1-H2-1)xL). Classification accuracy up to 90% has been achieved using one-against-all strategy with two hidden layers architecture. The performance of one-against-all approach is slightly better than the ordinary approach
يلعب القطاع الصناعي التحويلي في أي قطر دوراً هاماً في تحقيق التنمية الصناعية، اذ تتحد تاثيراته فيها على طبيعة الدور المرسوم له وعلى مدى فاعلية هذا القطاع الحيوي الذي يعد اتجاه نحو التعاظم المضطرد لمستويات الانتاجية " Levels of productivity"والتنويع الانتاجي والتدفق المستمر للتجديد التكنولوجي من اهم دلائله.
ويعد مؤشر الانتاجية بصفة عامة وانتاجيتي العمل وراس المال بصفة خاصة من الم
... Show More
The research aims to identify the magnitude of the impact of external debt on the gross domestic product in Morocco, and the importance of research lies in the role that external debt plays in addressing structural imbalances, if it is best disposed of according to well-studied economic plans by specialists in this regard, especially if these debts are directed with Other resources, as it helps pay the costs of these debts (debt servicing) that the external debt also raises the level of gross domestic product, and the research starts from the hypothesis that: There is an effect of foreign debt on the GDP in Morocco, has contributed in one way or another to The exacerbation of the external debt, which affected the m
... Show MoreIn this article, Convolution Neural Network (CNN) is used to detect damage and no damage images form satellite imagery using different classifiers. These classifiers are well-known models that are used with CNN to detect and classify images using a specific dataset. The dataset used belongs to the Huston hurricane that caused several damages in the nearby areas. In addition, a transfer learning property is used to store the knowledge (weights) and reuse it in the next task. Moreover, each applied classifier is used to detect the images from the dataset after it is split into training, testing and validation. Keras library is used to apply the CNN algorithm with each selected classifier to detect the images. Furthermore, the performa
... Show MoreOne of the most Interesting natural phenomena is clouds that have a very strong effect on the climate, weather and the earth's energy balance. Also clouds consider the key regulator for the average temperature of the plant. In this research monitoring and studying the cloud cover to know the clouds types and whether they are rainy or not rainy using visible and infrared satellite images. In order to interpret and know the types of the clouds visually without using any techniques, by comparing between the brightness and the shape of clouds in the same area for both the visible and infrared satellite images, where the differences in the contrasts of visible image are the albedo differences, while in the infrared images is the temperature d
... Show MoreThe internet of medical things (IoMT), which is expected the lead to the biggest technology in worldwide distribution. Using 5th generation (5G) transmission, market possibilities and hazards related to IoMT are improved and detected. This framework describes a strategy for proactively addressing worries and offering a forum to promote development, alter attitudes and maintain people's confidence in the broader healthcare system without compromising security. It is combined with a data offloading system to speed up the transmission of medical data and improved the quality of service (QoS). As a result of this development, we suggested the enriched energy efficient fuzzy (EEEF) data offloading technique to enhance the delivery of dat
... Show MoreSequence covering array (SCA) generation is an active research area in recent years. Unlike the sequence-less covering arrays (CA), the order of sequence varies in the test case generation process. This paper reviews the state-of-the-art of the SCA strategies, earlier works reported that finding a minimal size of a test suite is considered as an NP-Hard problem. In addition, most of the existing strategies for SCA generation have a high order of complexity due to the generation of all combinatorial interactions by adopting one-test-at-a-time fashion. Reducing the complexity by adopting one-parameter- at-a-time for SCA generation is a challenging process. In addition, this reduction facilitates the supporting for a higher strength of cove
... Show MoreThe purpose of this paper is to model and forecast the white oil during the period (2012-2019) using volatility GARCH-class. After showing that squared returns of white oil have a significant long memory in the volatility, the return series based on fractional GARCH models are estimated and forecasted for the mean and volatility by quasi maximum likelihood QML as a traditional method. While the competition includes machine learning approaches using Support Vector Regression (SVR). Results showed that the best appropriate model among many other models to forecast the volatility, depending on the lowest value of Akaike information criterion and Schwartz information criterion, also the parameters must be significant. In addition, the residuals
... Show More