DC planar sputtering system is characterized by varying discharge potential of (250-2000 volt) and Argon gas pressures of (3.5×10-2 – 1.5) mbar. The breakdown voltage for silver electrode was studied with a uniform electric field at different discharge distances, as well as plasma parameters. The breakdown voltage is a product of the Argon gas pressure inside the chamber and gab distance between the electrodes, represent as Paschen curve. The Current-voltage characteristics curves indicate that the electrical discharge plasma is working in the abnormal glow region. Plasma parameters were found from the current-voltage characteristics of a single probe positioned at the inter-cathode space. Typical values of the electron temperature and the electron density are in the range of (2.93 –5.3) eV and (10-16 -10-17) m-3 respectively.
Using a reduction of TRIM simulation data, the sputtering yield behaviour of Zinc target bombard by heavy Xenon ions plasma is studied. The sputtering yield as a function of Zinc layer width, Xenon ion number, energy of ions, and the angle of ion incidence are calculated and illustrated graphically. The corresponding energy loss due to ionization, vacancies and phonons, are graphically shown and discussed. Further, we fit the calculations and expressions for fitted curves are presented with its coefficients.
This work is devoted to the modeling of streamer discharge, propagation in liquid dielectrics (water) gap using the bubble theory. This of the electrical discharge (streamer) propagating within a dielectric liquid subjected to a divergent electric field, using finite element method (in two dimensions). Solution of Laplace's equation governs the voltage and electric field distributions within the configuration, the electrode configuration a point (pin) - plane configuration, the plasma channels were followed, step to step. The results show that, the electrical discharge (streamer) indicates the breakdown voltage required for a 3mm atmospheric pressure dielectric liquid gap as 13 kV. Also, the electric potential and field distributions sho
... Show MoreComsol multiphysics software is established to make a simulation that is comparable with experimental device. by utilizing comsol, the positive column domain of direct-current glow discharge with argon is considered for both of different applied voltage and working gas pressure. The calculations are exhibited by using a precise collision cross sections and Townsend coefficients for the argon. The impacts of voltage and pressure on the Debye length, number of particles in Debye sphere and plasma frequency are calculated and graphically delineated. With this regard to the dependence of plasma parameters on the applied voltage and pressure, some of them are found to be compatible with the experimental
... Show MoreNon thermal argon plasma needle at atmospheric pressure was constructed. The experimental set up was based on simple and low cost electric components that generate electrical field sufficiently high at the electrodes to ionize various gases which flow at atmospheric pressure. A high AC power supply was used with 9.6kV peak to peak and 33kHz frequency. The plasma was generated using two electrodes. The voltage and current discharge waveform were measured. The temperature of Ar gas plasma jet at different gas flow rate and distances from the plasma electrode was also recorded. It was found that the temperature increased with increasing frequency to reach the maximum value at 15 kHz, and that the current leading the voltage, which demonstra
... Show MoreA study of the effects of the discharge (sputtering) currents (60-75 mA) and the thickness of copper target (0.037, 0.055 and 0.085 mm) on the prepared samples was performed. These samples were deposited with pure copper on a glass substrate using dc magnetron sputtering with a magnetic flux density of 150 gauss at the center. The effects of these two parameters were studied on the height, diameter, and size of the deposition copper grains as well as the roughness of surface samples using atomic force microscopy (AFM).The results of this study showed that it is possible to control the specifications of copper grains by changing the discharge currents and the thickness of the target material. The increase in discharge curre
... Show MoreThis work describes, selenium (Se) films were deposited on clean glass substrates by dc planar magnetron sputtering technique.The dependence of sputtering deposition rate of Se film deposited on pressure and DC power has been studied. The optimum argon pressure has range (4x10-1 -8x10-2 )mbar. The optical properties such as absorption coefficient (α) was determined using the absorbance and transmission measurement from UnicoUV-2102 PC spectrophotometer, at normal incidence of light in the wavelength range of 200-850 nm. And also we calculated optical constants(refractive index (n), dielectric constant (εi,r), and Extinction coefficient (κ) for selenium films.
Alot of medical and industrial applications used the metal nanoparticles (NPs) with increase interest to be used as cancer therapy. The current work aimed to prepare AuNPs and AgNPs through the use of plasma jet and test their antitumor mechanism of apoptosis induction. The results indicating the face-centered cubic structures and crystalline nature of AuNPs and AgNPs. Also, the image of FESEM showed that the well dispersions regarding AuNPs and AgNPs, while the NP’s spherical shape with the particle size distributions which are considered to be close that estimated from the XRD. cytotoxicity have been assessed against the Normal embryonic cell line REF and the digestive system (HC , SK-GT-4) cell lines under a variety of the seri
... Show MoreCalculations of sputtering yield for Lithium,Sodium and Krypton bombarded by the same own ions are achieved by using TRIM program.The relation of angular dependent of sputtering yield for each ion/target is studied. Also, the dependence of the sputtering yield of target on the energy of the same ion is discussed and plotted graphically. Many researchers applied polynomials function to fit the sputtering data from experimental and simulation programs, however, we suggest to use Ior function for fitting the angular distribution of the sputtering yield. A New data for fitting coefficients of the used ion/target are presented by applying used function for the dependence of the sputtering yield on the ion energy.
Non-thermal plasmas have become popular as plasma technology has advanced in various fields, including waste management, aerospace technology, and medicinal applications. They can be used to replace combustion fuels in stationary hall motors and need little effort to keep running for longer periods of time. To improve overall system performance, non-reactive gases such as )Xe, Ar, and Kr) are utilized in pure or mixed form to generate plasma. Since DC glow discharge is a fundamental topic of importance, these gases have been researched. The paper concentrates on 2-D modeling and simulation. DC glow-discharge tubes are utilized with argon gas to create plasma and learn about its properties. The magnitude of the electron density, increases wi
... Show MoreA d.c. magnetron sputtering system was designed and fabricated. The chamber of this system is consisted from two copper coaxial cylinders. The inner one used as the cathode and the outer one used as anode with magnetic coil located on the outer cylinder (anode). The axial behavior of the magnetic field strength along the cathode surface for various coil current (from 2A to 14A) are shown. The results of this work are investigated by three cylindrical Langmuir probes that have different diameters that are 2.2mm, 1mm, and 0.45mm. The results of these probes show that, there are two Maxwellian electron groups appear in the central region. As well as, the density of electron and ion decreases with increases of magnetic field strengths.