Using a reduction of TRIM simulation data, the sputtering yield behaviour of Zinc target bombard by heavy Xenon ions plasma is studied. The sputtering yield as a function of Zinc layer width, Xenon ion number, energy of ions, and the angle of ion incidence are calculated and illustrated graphically. The corresponding energy loss due to ionization, vacancies and phonons, are graphically shown and discussed. Further, we fit the calculations and expressions for fitted curves are presented with its coefficients.
Calculations of sputtering yield for Lithium,Sodium and Krypton bombarded by the same own ions are achieved by using TRIM program.The relation of angular dependent of sputtering yield for each ion/target is studied. Also, the dependence of the sputtering yield of target on the energy of the same ion is discussed and plotted graphically. Many researchers applied polynomials function to fit the sputtering data from experimental and simulation programs, however, we suggest to use Ior function for fitting the angular distribution of the sputtering yield. A New data for fitting coefficients of the used ion/target are presented by applying used function for the dependence of the sputtering yield on the ion energy.
Extended calculations for sputtering yield through bombed Nickel – target by Xenon ions plasma are accomplished. The calculations include changing the input parameters: the energy of xenon ions plasma, the hit target angle of nickel target, thickness of the nickel target layer, and the slight change in the surface binding energy of Nickel. The program TRIM is used to accomplish these calculations. The results show that the sputtering yields directly dependent on these parameters. The change in angles of incidence plasma ions and energy leads to a significant change in the sputtering yields. On the other hand, the sputtering yields ore highly affected by changing target width and surface binding energy at fixed ion parameters.
Extended calculations for sputtering yield through bombed Iron – target by ( H,D ,T ,He ) ions plasma are accomplished .The calculations include changing the input parameters : the energy of ( H,D ,T ,He ) ions plasma, the hit target angle of Iron, change atomic mass of incident ion. The program TRIM is used to accomplish these calculations. The results show that sputtering yield is directly dependent on these parameters. It can change the incident angle of ( H,D ,T ,He ) ions and energy&n
... Show MoreThe aim of this paper was to investigate the removal efficiencies of Zn+2 ions from wastewater by adsorption (using tobacco leaves) and forward osmosis (using cellulose triacetate (CTA) membrane). Various experimental parameters were investigated in adsorption experiment such as: effect of pH (3 - 7), contact time (0 - 220) min, solute concentration (10 - 100) mg/l, and adsorbent dose (0.2 - 5)g. Whereas for forward osmosis the operating parameters studied were: draw solution concentration (10 - 150) g/l, pH of feed solution (4 - 7), feed solution concentration (10 - 100) mg/l. The result showed that the removal efficiency by using adsorption was 70% and the removal efficiency by using forward osmosis was 96.2 %.
... Show MoreWe investigate the interaction of proton with a solid target, describing the wake effects by taking fitted parameters with experimental values of energy loss function ELF for copper using the dielectric function of random phase approximation (RPA). The results exhibited a damped oscillatory behavior in the longitudinal direction behind the projectile. In addition, the wake potential becomes asymmetric around the z-axis with proton velocity values higher than Fermi velocity, as well as it depends on the position of projectile in cylindrical coordinates.
DC planar sputtering system is characterized by varying discharge potential of (250-2000 volt) and Argon gas pressures of (3.5×10-2 – 1.5) mbar. The breakdown voltage for silver electrode was studied with a uniform electric field at different discharge distances, as well as plasma parameters. The breakdown voltage is a product of the Argon gas pressure inside the chamber and gab distance between the electrodes, represent as Paschen curve. The Current-voltage characteristics curves indicate that the electrical discharge plasma is working in the abnormal glow region. Plasma parameters were found from the current-voltage characteristics of a single probe positioned at the inter-cathode space. Typical values of the electron temperature an
... Show MoreA study of the effects of the discharge (sputtering) currents (60-75 mA) and the thickness of copper target (0.037, 0.055 and 0.085 mm) on the prepared samples was performed. These samples were deposited with pure copper on a glass substrate using dc magnetron sputtering with a magnetic flux density of 150 gauss at the center. The effects of these two parameters were studied on the height, diameter, and size of the deposition copper grains as well as the roughness of surface samples using atomic force microscopy (AFM).The results of this study showed that it is possible to control the specifications of copper grains by changing the discharge currents and the thickness of the target material. The increase in discharge curre
... Show MoreIn this research, the electrical characteristics of glow discharge plasma were studied. Glow discharge plasma generated in a home-made DC magnetron sputtering system, and a DC-power supply of high voltage as input to the discharge electrodes were both utilized. The distance between two electrodes is 4cm. The gas used to produce plasma is argon gas which flows inside the chamber at a rate of 40 sccm. The influence of work function for different target materials (gold, copper, and silver), - 5cm in diameter and around 1mm thickness - different working pressures, and different applied voltages on electrical characteristics (discharge current, discharge potential, and Paschen’s curve) were studied. The results showed that the discharge cur
... Show More