Preferred Language
Articles
/
ijp-778
Influence of grounded electrode area on breakdown current in RF capcitively coupled plasma
...Show More Authors

The influence of the grounded electrode area on the ignition voltage in capcitively coupled radio frequency discharge at 13.56 MHz in argon gas is studied experimentally. The results indicate a systematic decrease of the breakdown voltage with increasing grounded electrode area for the same pd value. Results show that the secondary ionization coefficient γ increases with the increase of grounded electrode area. Furthermore, results also the discharge current at the breakdown voltage increases almost linearly with the increase of electrode area suggesting an almost constant current density.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Oct 02 2018
Journal Name
Iraqi Journal Of Physics
Effect of gas flow rate on plasma temperature and electron density of atmospheric argon plasma jet
...Show More Authors

In this study, method for experimentally determining the electron density (ne) and the electron temperature (Te) in the atmospheric Argon plasma jet is used; it is based on optical emission spectroscopy (OES). Boltzmann plot method used to calculate these parameters measured for different values of gas flow rate. The results show that the electron temperature decreasing with the increase of gas flow rate also indicates an increasing in the electron density of plasma jet with increasing of gas flow rate.

View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Wed Aug 02 2023
Journal Name
Contemporary Trends And Issues In Science Education
Using Multi-faceted Rasch Models to Understand Middle School Students’ Argumentation Around Scenarios Grounded in Socio-scientific Issues
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Baghdad Science Journal
Impacts of Denial-of-Service Attack on Energy Efficiency Pulse Coupled Oscillator
...Show More Authors

The Pulse Coupled Oscillator (PCO) has attracted substantial attention and widely used in wireless sensor networks (WSNs), where it utilizes firefly synchronization to attract mating partners, similar to artificial occurrences that mimic natural phenomena. However, the PCO model might not be applicable for simultaneous transmission and data reception because of energy constraints. Thus, an energy-efficient pulse coupled oscillator (EEPCO) has been proposed, which employs the self-organizing method by combining biologically and non-biologically inspired network systems and has proven to reduce the transmission delay and energy consumption of sensor nodes. However, the EEPCO method has only been experimented in attack-free networks without

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Baghdad Science Journal
On Blow-up Solutions of A Parabolic System Coupled in Both Equations and Boundary Conditions
...Show More Authors

This paper is concerned with the blow-up solutions of a system of two reaction-diffusion equations coupled in both equations and boundary conditions. In order to understand how the reaction terms and the boundary terms affect the blow-up properties, the lower and upper blow-up rate estimates are derived. Moreover, the blow-up set under some restricted assumptions is studied.

View Publication Preview PDF
Scopus (10)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Mon Jul 01 2019
Journal Name
Journal Of Physics: Conference Series
Determination of the Fertility of Southern Iraqi Soil Using Laser - Induced Breakdown Spectroscopy System
...Show More Authors

In this work, seven soil samples were brought brought to study and analyses the element concentrations from different southern regions of Iraq using laser-induced breakdown spectroscopy (LIBS) technique. It has been documented as an atomic emission spectroscopy (AES) technique. Laser-induced plasma utilized to analyze elements in materials (gases, liquids, and solids). In order to analyze elements in materials (gases, liquids, and solid). The Nd: YAG laser excitation source at 1064 nm with pulse width 9 ns is used to generate power density of 5.5 x 1012 MW/mm2, with optical spectrum in the range 320-740 nm. From this investigation, the soil sample analysis of the southern cities of Iraqi, it is concluded that the rich soil element of P, Si,

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Wed May 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Effects of Temperature on Thermodynamic parameters and Carbon Nanotubes Growth Rate on Aluminum Electrode in Electrochemical deposition Process
...Show More Authors

 The optimum process conditions of the electrochemical deposition of carbon nanotubes (CNT) have been established by using developed, cheap and simple system. It has been found that temperature affects on the rate, purity and the yield of CNT obtained in this process. The electrochemical behavior of CNT deposition, kinetic and thermodynamic parameters were also discussed.

View Publication Preview PDF
Publication Date
Sat Mar 30 2002
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Potential and Current Distribution in Flow Through Porous Electrochemical Reactor Working under Limiting Current Conditions
...Show More Authors

View Publication Preview PDF
Publication Date
Wed Mar 08 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Electrical Insulation Breakdown Strength and Thermal Conductivity of Different Blended Nanocomposites of New Epoxy Resins
...Show More Authors

This research studies the development and synthesis of blended nanocomposites filled with Titanium dioxide (TiO2). Blended nanocomposites based on unsaturated polyester resin (UPR) and epoxy resins were synthesized by reactive blending. The optimum quantity from nano partical of titanium dioxide was selected and different weight proportions 1%, 3%, 5%, and 7% ratios of new epoxy are blended with UPR resin. The dielectric breakdown strength and thermal conductivity properties of the blended nanocomposites were compared with those of the basis material (UPR and 3% TiO2).The results show good compatibility epoxy resins with the UPR resin on blending, dielectric breakdown strength values  are higher while thermal conductivity values of

... Show More
View Publication
Publication Date
Wed Mar 08 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Electrical Insulation Breakdown Strength and Thermal Conductivity of Different Blended Nanocomposites of New Epoxy Resins
...Show More Authors

This research studies the development and synthesis of blended nanocomposites filled with Titanium dioxide (TiO2). Blended nanocomposites based on unsaturated polyester resin (UPR) and epoxy resins were synthesized by reactive blending. The optimum quantity from nano partical of titanium dioxide was selected and different weight proportions 1%, 3%, 5%, and 7% ratios of new epoxy are blended with UPR resin. The dielectric breakdown strength and thermal conductivity properties of the blended nanocomposites were compared with those of the basis material (UPR and 3% TiO2).The results show good compatibility epoxy resins with the UPR resin on blending, dielectric breakdown strength values  are higher while thermal conductivity values of

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 01 2018
Journal Name
2018 Third Scientific Conference Of Electrical Engineering (scee)
A UWB Monopole Antenna Design based RF Energy Harvesting Technology
...Show More Authors

Recently, wireless charging based RF harvesting has interfered our lives [1] significantly through the different applications including biomedical, military, IoT, RF energy harvesting, IT-care, and RFID technologies. Wirelessly powered low energy devices become significantly essential for a wide spectrum of sensing applications [1]. Such devices require for low energy resources from sunlight, mechanical vibration, thermal gradients, convection flows or other forms of harvestable energy [2]. One of the emerging power extraction resources based on passive devices is harvesting radio frequency (RF) signals powers [3]–[5]. Such applications need devices that can be organized in very large numbers, so, making separate node battery impractical.

... Show More
View Publication
Scopus (13)
Crossref (9)
Scopus Crossref