Preferred Language
Articles
/
ijp-778
Influence of grounded electrode area on breakdown current in RF capcitively coupled plasma

The influence of the grounded electrode area on the ignition voltage in capcitively coupled radio frequency discharge at 13.56 MHz in argon gas is studied experimentally. The results indicate a systematic decrease of the breakdown voltage with increasing grounded electrode area for the same pd value. Results show that the secondary ionization coefficient γ increases with the increase of grounded electrode area. Furthermore, results also the discharge current at the breakdown voltage increases almost linearly with the increase of electrode area suggesting an almost constant current density.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Oct 01 2012
Journal Name
Iraqi Journal Of Physics
Influence of substrate temperature on structural and optical properties of SnO2 films

Tin Oxide (SnO2) films have been deposited by spray pyrolysis technique at different substrate temperatures. The effects of substrate temperature on the structural, optical and electrical properties of SnO2 films have been investigated. The XRD result shows a polycrystalline structure for SnO2 films at substrate temperature of 673K. The thickness of the deposited film was of the order of 200 nm measured by Toulansky method. The energy gap increases from 2.58eV to 3.59 eV when substrate temperature increases from 473K to 673K .Electrical conductivity is 4.8*10-7(.cm)-1 for sample deposited at 473K while it increases to 8.7*10-3 when the film is deposited at 673K

View Publication Preview PDF
Publication Date
Fri Mar 27 2020
Journal Name
Iraqi Journal Of Science
Influence of ZnO Nanoparticles on Candida albicans of Human Male Pleural Fluid

The utilization of metal oxide nanoparticles, especially zinc oxide, is of a great importance in the medical field because of its physical and chemical properties as well as its antimicrobial potential effects. In our study, the ZnO nanoparticles were synthesized by the precipitation method where pH=14. ZnO nanoparticles were characterized by ultraviolet–visible spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM) and atomic force microscope (AFM). Antifungal activity of the ZnO was tested against candida albicans. The results showed that C. albicans (15 samples) became resistant to the fungal activity after testing its sensitivity to several types of fungal antibiotics. UV-vis spectroscopy, XRD, TEM and A

... Show More
Scopus (4)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Dec 14 2021
Journal Name
Sustainability
Influence of Iron Filing Waste on the Performance of Warm Mix Asphalt

Recently, interest in the use of projectiles in research on recycling waste materials for construction applications has grown. Using recycled materials for the construction of asphalt concrete pavement, in the meantime, has become a topic of research due to its significant benefits, such as cost savings and reduced environmental impacts. This study reports on comprehensive experimental research conducted using a typical mechanical milling waste, iron filing waste (IFW), as an alternative fine aggregate for warm mix asphalt (WMA) for pavement wearing surface applications. A type of IFW from a local machine workshop was used to replace the conventional fine aggregate, fine natural sand (FNS), at percentages of 25%, 50% 75%, and 100% b

... Show More
Crossref (8)
Crossref
Publication Date
Sun Apr 30 2017
Journal Name
Journal Of Engineering
Influence of Internal Sulfate Attack on Some Properties of Self Compacted Concrete

      Self-compacted concrete (SCC) is a highly flowable concrete, with no segregation which can be spread into place by filling the structures framework and permeate the reinforcement without any compaction or mechanical consolidation ACI 237R-14. One of the most important problems faced by concrete industry in Iraq and Gulf Arab land is deterioration due to internal sulfate attack (ISA) that causes damage of concrete and consequently reduces its compressive strength, increases expansion and may lead to its cracking and destruction. The experimental program was focused to study two ordinary Portland cements with different chemical composition with (5, 10 and 15) % percentage of high reactivity metakaoline (HRM)

... Show More
View Publication Preview PDF
Publication Date
Mon Apr 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Influence of the Annealing Temperature on optical Properties of (CuInSe2) Thin Films

  The Influence of annealing temperature on the optical properties of (CuInSe2) thin films was studied. Thermal evaporation in vacuum technique has been used for films deposited on glass substrates, these films were annealed in vacuum at (100C°, 200C°) for (2 hours). The optical properties were studied in the range (300-900) nm. The obtained results revealed a reduction in energy band gap with annealing temperature . optical parameters such as reflectance, refractive index, extinction coefficient, real and imaginary parts of the dielectric constant, skin depth and optical conductivity are investigated before and after annealing. It was found that all these parameters were affected by annealing temperature.
 

View Publication Preview PDF
Publication Date
Wed Jun 26 2019
Journal Name
Iraqi Journal Of Science
Influence of WS2 Nanoparticles Lubricants on Physical Characteristics of Wrought Aluminium Alloys

The present study considers an influence of WS2 nanoparticles lubricants on physical characteristics of wrought Aluminium alloys. It is investigated parameters-performance relationship via tribological pin-on-disc tests, the pin is made of Aluminium alloys and the disk is made of AISI.1045, and the humidity was 70%. Oils with WS2 nanoparticles and without them reveal the loss rate of wear. In this study, the coefficient of friction (CoF) is reduced from 0.27 to 0.22 and the wear rate decreased from 0.128 x 10-6 Nm-1 to 0.107 x 10-6 Nm-1 at a load of 20 N. All worn surfaces were typically three types in wear mechanisms such as adhesive, abrasive, and oxidative wear. In addi

... Show More
Scopus (2)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Dec 01 2011
Journal Name
Iraqi Journal Of Physics
Influence of doping concentration on the main parameters of CdSe:Cu photoconductor detector

The photonconductor detectors CdSe:Cu was fabricated as a thin film of (1 μm) in thickness using vacuum evaporation technique. doping with copper was made using vacuum annealing at 350oC under argon atmosphere . The spectral responsivity and spectral detectivity of the detector were determined as a function of incident wavelength on the sample. A remarkable improvement in performance was absorbed for the specimen, which doping with (1-5 wt%) Cu.
The spectral response increases with increasing of wavelength for incident radiation to maximum value, after that , it reduced sharply . There is a shifting for peak responsivity indirect of higher wavelength. The detectivity was increased with doping but its decreased as the concentration in

... Show More
View Publication Preview PDF
Publication Date
Tue Jul 20 2021
Journal Name
Polymer Bulletin
Scopus (26)
Crossref (22)
Scopus Clarivate Crossref
View Publication
Publication Date
Sat Aug 01 2015
Journal Name
2015 37th Annual International Conference Of The Ieee Engineering In Medicine And Biology Society (embc)
Scopus (11)
Crossref (8)
Scopus Crossref
View Publication
Publication Date
Sun Sep 07 2014
Journal Name
Baghdad Science Journal
Factors Influence on the yield of Bacterial Cellulose of Kombucha (Khubdat Humza)

Kombucha(Khubdat Humza) is composed of yeast and acetic acid bacteria especially, Acetobacter xylinum which forms a cellulose pellicle on tea broth. Kombucha(Khubdat Humza) produces bacterial cellulose pellicles, with unique purity and fine structure. It can be used in many forms, such as an emulsifier, stabilizer, dispersing agent, thickener and gelling agent but these are generally subsidiary to its most important use of holding on to water. Recently, bacterial cellulose is used in many special applications such as a scaffold for tissue engineering of cartilages and blood vessels, also for artificial skin for temporary covering of wounds, as well as its used in the clothing industry. The yield of cellulose produced were investiga

... Show More
Crossref (5)
Crossref
View Publication Preview PDF