Preferred Language
Articles
/
ijp-769
Early detection of breast cancer mass lesions by mammogram segmentation images based on texture features
...Show More Authors

Mammography is at present one of the available method for early detection of masses or abnormalities which is related to breast cancer. The most common abnormalities that may indicate breast cancer are masses and calcifications. The challenge lies in early and accurate detection to overcome the development of breast cancer that affects more and more women throughout the world. Breast cancer is diagnosed at advanced stages with the help of the digital mammogram images. Masses appear in a mammogram as fine, granular clusters, which are often difficult to identify in a raw mammogram. The incidence of breast cancer in women has increased significantly in recent years.
This paper proposes a computer aided diagnostic system for the extraction of features like mass lesions in mammograms for early detection of breast cancer. The proposed technique is based on a four-step procedure: (a) the preprocessing of the image is done, (b) regions of interest (ROI) specification, (c) supervised segmentation method includes two stages performed using the minimum distance (MD) criterion, and (d) feature extraction based on Gray level Co-occurrence matrices GLCM for the identification of mass lesions. The method suggested for the detection of mass lesions from mammogram image segmentation and analysis was tested over several images taken from Al-Ilwiya Hospital in Baghdad, Iraq. The proposed technique shows better results

View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Oct 02 2023
Journal Name
Journal Of Engineering
Skull Stripping Based on the Segmentation Models
...Show More Authors

Skull image separation is one of the initial procedures used to detect brain abnormalities. In an MRI image of the brain, this process involves distinguishing the tissue that makes up the brain from the tissue that does not make up the brain. Even for experienced radiologists, separating the brain from the skull is a difficult task, and the accuracy of the results can vary quite a little from one individual to the next. Therefore, skull stripping in brain magnetic resonance volume has become increasingly popular due to the requirement for a dependable, accurate, and thorough method for processing brain datasets. Furthermore, skull stripping must be performed accurately for neuroimaging diagnostic systems since neither non-brain tissues nor

... Show More
Publication Date
Mon Oct 02 2023
Journal Name
Journal Of Engineering
Skull Stripping Based on the Segmentation Models
...Show More Authors

Skull image separation is one of the initial procedures used to detect brain abnormalities. In an MRI image of the brain, this process involves distinguishing the tissue that makes up the brain from the tissue that does not make up the brain. Even for experienced radiologists, separating the brain from the skull is a difficult task, and the accuracy of the results can vary quite a little from one individual to the next. Therefore, skull stripping in brain magnetic resonance volume has become increasingly popular due to the requirement for a dependable, accurate, and thorough method for processing brain datasets. Furthermore, skull stripping must be performed accurately for neuroimaging diagnostic systems since neither no

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jan 01 2013
Journal Name
International Journal Of Advanced Research In Computer Science And Software Engineering
Boundary & Geometric Region Features Image Segmentation for Quadtree Partitioning Scheme
...Show More Authors

In this paper, an efficient image segmentation scheme is proposed of boundary based & geometric region features as an alternative way of utilizing statistical base only. The test results vary according to partitioning control parameters values and image details or characteristics, with preserving the segmented image edges.

Publication Date
Sun Jan 01 2023
Journal Name
Aip Conference Proceedings
Surface enhanced Raman spectroscopy based sensitive and specific detection of vitamin D3, glycated hemoglobin, and serum lipid profile of breast cancer patients
...Show More Authors

Considering the expanding frequency of breast cancer and high incidence of vitamin D3 [25(OH)D3] insufficiently, this investigate pointed to explain a relation between serum [25(OH)D3] (the sunshine vitamin) level and breast cancer hazard. The current study aimed to see how serum levels of each [25(OH)D3], HbA1c%, total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), and triglyceride (TG) were affected a woman’s risk of getting breast cancer. In 40 healthy volunteers and 69 untreated breast cancer patients with clinical and histological evidence which include outpatients and hospitalized admissions patients at the Oncology Center, Medical City / Baghdad - Iraq. Venous blood samp

... Show More
View Publication
Scopus (6)
Crossref (4)
Scopus Crossref
Publication Date
Mon Feb 22 2021
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
MRI images series segmentation using the geodesic deformable model
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Wed Apr 05 2023
Journal Name
International Journal Of Interactive Mobile Technologies (ijim)
A Partial Face Encryption in Real World Experiences Based on Features Extraction from Edge Detection
...Show More Authors

User confidentiality protection is concerning a topic in control and monitoring spaces. In image, user's faces security in concerning with compound information, abused situations, participation on global transmission media and real-world experiences are extremely significant. For minifying the counting needs for vast size of image info and for minifying the size of time needful for the image to be address computationally. consequently, partial encryption user-face is picked. This study focuses on a large technique that is designed to encrypt the user's face slightly. Primarily, dlib is utilizing for user-face detection. Susan is one of the top edge detectors with valuable localization characteristics marked edges, is used to extract

... Show More
View Publication
Scopus (4)
Crossref (3)
Scopus Crossref
Publication Date
Thu Jun 30 2022
Journal Name
Iraqi National Journal Of Nursing Specialties
Impact of Psychological Distress in Women upon Coping with Breast Cancer: Coping with Breast Cancer
...Show More Authors

Objective(s): To determine the impact of psychological distress in women upon coping with breast cancer.

Methodology: A descriptive design is carried throughout the present study. Convenient sample of (60) woman with breast cancer is recruited from the community. Two instruments, psychological distress scale and coping scale are developed for the study. Internal consistency reliability and content validity are obtained for the study instruments. Data are collect through the application of the study instruments. Data are analyzed through the use of descriptive statistical data analysis approach and inferential statistical data analysis approach.

Results: The study findings depict that women with breast cancer have experien

... Show More
View Publication Preview PDF
Publication Date
Fri May 05 2017
Journal Name
International Journal Of Science And Research (ijsr)
Automatic brain tumor segmentation from MRI images using region growing algorithm
...Show More Authors

LK Abood, RA Ali, M Maliki, International Journal of Science and Research, 2015 - Cited by 2

View Publication
Publication Date
Fri Feb 17 2023
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics
Deploying Facial Segmentation Landmarks for Deepfake Detection
...Show More Authors

Deepfake is a type of artificial intelligence used to create convincing images, audio, and video hoaxes and it concerns celebrities and everyone because they are easy to manufacture. Deepfake are hard to recognize by people and current approaches, especially high-quality ones. As a defense against Deepfake techniques, various methods to detect Deepfake in images have been suggested. Most of them had limitations, like only working with one face in an image. The face has to be facing forward, with both eyes and the mouth open, depending on what part of the face they worked on. Other than that, a few focus on the impact of pre-processing steps on the detection accuracy of the models. This paper introduces a framework design focused on this asp

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
BotDetectorFW: an optimized botnet detection framework based on five features-distance measures supported by comparisons of four machine learning classifiers using CICIDS2017 dataset
...Show More Authors

<p><span>A Botnet is one of many attacks that can execute malicious tasks and develop continuously. Therefore, current research introduces a comparison framework, called BotDetectorFW, with classification and complexity improvements for the detection of Botnet attack using CICIDS2017 dataset. It is a free online dataset consist of several attacks with high-dimensions features. The process of feature selection is a significant step to obtain the least features by eliminating irrelated features and consequently reduces the detection time. This process implemented inside BotDetectorFW using two steps; data clustering and five distance measure formulas (cosine, dice, driver &amp; kroeber, overlap, and pearson correlation

... Show More
View Publication
Scopus (7)
Crossref (2)
Scopus Crossref