Mammography is at present one of the available method for early detection of masses or abnormalities which is related to breast cancer. The most common abnormalities that may indicate breast cancer are masses and calcifications. The challenge lies in early and accurate detection to overcome the development of breast cancer that affects more and more women throughout the world. Breast cancer is diagnosed at advanced stages with the help of the digital mammogram images. Masses appear in a mammogram as fine, granular clusters, which are often difficult to identify in a raw mammogram. The incidence of breast cancer in women has increased significantly in recent years.
This paper proposes a computer aided diagnostic system for the extraction of features like mass lesions in mammograms for early detection of breast cancer. The proposed technique is based on a four-step procedure: (a) the preprocessing of the image is done, (b) regions of interest (ROI) specification, (c) supervised segmentation method includes two stages performed using the minimum distance (MD) criterion, and (d) feature extraction based on Gray level Co-occurrence matrices GLCM for the identification of mass lesions. The method suggested for the detection of mass lesions from mammogram image segmentation and analysis was tested over several images taken from Al-Ilwiya Hospital in Baghdad, Iraq. The proposed technique shows better results
<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver ope
... Show MoreThe brain's magnetic resonance imaging (MRI) is tasked with finding the pixels or voxels that establish where the brain is in a medical image The Convolutional Neural Network (CNN) can process curved baselines that frequently occur in scanned documents. Next, the lines are separated into characters. In the Convolutional Neural Network (CNN) can process curved baselines that frequently occur in scanned documents case of fonts with a fixed MRI width, the gaps are analyzed and split. Otherwise, a limited region above the baseline is analyzed, separated, and classified. The words with the lowest recognition score are split into further characters x until the result improves. If this does not improve the recognition s
... Show MoreMost recognition system of human facial emotions are assessed solely on accuracy, even if other performance criteria are also thought to be important in the evaluation process such as sensitivity, precision, F-measure, and G-mean. Moreover, the most common problem that must be resolved in face emotion recognition systems is the feature extraction methods, which is comparable to traditional manual feature extraction methods. This traditional method is not able to extract features efficiently. In other words, there are redundant amount of features which are considered not significant, which affect the classification performance. In this work, a new system to recognize human facial emotions from images is proposed. The HOG (Histograms of Or
... Show MoreBackground: Breast cancer is the most common malignancy affecting the Iraqi population and the leading cause of cancer related mortality among Iraqi women. It has been well documented that prognosis of patients depends largely upon the hormone receptor contents and HER-2 over expression of their neoplasm. Recent studies suggest that Triple Positive (TP) tumors, bearing the three markers, tend to exhibit a relatively favorable clinical behavior in which overtreatment is not recommended. Aim: To document the different frequencies of ER/PR/HER2 breast cancer molecular subtypes focusing on the Triple Positive pattern; correlating those with the corresponding clinico-pathological characteristics among a sample of Iraqi patients diagnosed with th
... Show MoreBackground: Acute radiodermatitis is a common side effect during and after radiotherapy course in breast cancer patients treated by radiotherapy. This study assess the frequency of acute radiodermatitis and record the predictive factors for acute radiodermatitis. Patients and Methods: A descriptive case series study conducted at Baghdad, Iraq from August 2020 to September 2021. 70 female scheduled for radiotherapy sessions enrolled in this study. sociodemographic data were recorded and Skin examination before radiotherapy and weekly till the end of the radiotherapy sessions was done to report the frequency, risk factors, clinical picture and grades of acute radiodermatitis based on The National Cancer Institute’s Common Terminology Crite
... Show MoreIntroduction: A Pap test can detect pre-cancerous and cancerous cells in the vagina and uterine cervix. Cervical cancer is the easiest gynecologic cancer to be prevented and diagnosed using regular screening tests and follow-up. This study aimed to estimate the cytological changes and the precancerous lesions using Pap smear test and visual inspection of the cervices of Iraqi women, and also to determine the possible relationship of this cancer with patients’ demographic characteristics. Methods: The study included 140 women aged (18-67) years old referred to the National Cancer Research Center (NCRC), Baghdad, Iraq, during the period 2011-2016. Both visual inspections of the uterine cervix and Papanicolaou smear screening were performed
... Show MoreObjective Using two complementary techniques of virus detection human papillomavirus (HPV)[capture of hybrids (CH) and polymerase chain reaction (PCR)], relate the cytological study and/or cervical biopsy with high-risk HPV (HPV-HR) genotypes presence, as well as relating their viral load (VL). Methods About 272 women, who presented most cell alterations compatible with lesions cervical HPV, which has been detected in all high risk by the CH method and HPV genotype detection by PCR. Results In 22% of the patients it was not detected HPV DNA. Genotype 16 and/or 18 was prevalent and was found in 33% of the 212 women studied, meanwhile, mixed infections were found by several genotypes in 25%. In as for the histological lesions found, in 61 pat
... Show MoreBreast cancer (BC) is the most commonly diagnosed cancer in women. The metabolism of iron is closely regulated by hepcidin which exerts its action by interacting with a ferroportin.
The aim of the present study was to assess the alterations in the levels of some serum biomarkers that have a role in iron homeostasis (hepcidin and ferroportin) in addition to hematological parameters (hemoglobin, leukocyte and platelets count) in different stages of BC.
This study included 66 women with BC. The patients were categorized as follows : group 1 includes :22 patients with stage I disease ,group 2 includes: 22 patients with stage II disease ,and group 3 include: 22 patients with stage III disease .Group 4 includes :22 appare
... Show MoreBreast cancer becomes a major threat to female health, many reports refer to a high incidence of breast cancer in Iraq; especially, in the last years. The micro RNA-370 molecules have not been reported in Iraqi cancer patients. Our objective in this study was to identify the expression of micro RNA-370 molecules in breast cancer patients as an early detection biomarker of breast tumors and detect its relation with clinicopathological characters of breast cancer patients. Fifty fresh tissue samples were collected from benign and malignant breast patients in addition to ten normal tissue samples collected as a control group, the age ranged was(19 - 77) years for patients. The miR-370 gene expression level was measured by the quantitative r
... Show More