Ab – initio density function theory (DFT) calculations coupled with Large Unit Cell (LUC) method were carried out to evaluate the electronic structure properties of III-V zinc blend (GaAs). The nano – scale that have dimension (1.56-2.04)nm. The Gaussian 03 computational packages has been employed through out this study to compute the electronic properties include lattice constant, energy gap, valence and conduction band width, total energy, cohesive energy and density of state etc. Results show that the total energy and energy gap are decreasing with increase the size of nano crystal . Results revealed that electronic properties converge to some limit as the size of LUC increase .
Effect of [Cu/In] ratio on the optical properties of CuInS2 thin films prepared by chemical spray pyrolysis on glass slides at 300oC was studied. The optical characteristics of the prepared thin films have been investigated using UV-VIS spectrophotometer in the wavelength range (300-1100 nm). The films have a direct allow electronic transition with optical energy gap (Eg) decreased from 1.51 eV to 1.30 eV with increasing of [Cu/In] ratio and as well as we notice that films have different behavior when annealed the films in the temperature 100oC (1h,2h), 200oC (1h,2h) for [Cu/In]=1.4 . Also the extinction coefficient (k), refractive index (n) and the real and imaginary dielectric constants (ε1, ε2) have been investigated
This paper reports the effect of Mg doping on structural and optical properties of ZnO prepared by pulse laser deposition (PLD). The films deposited on glass substrate using Nd:YAG laser (1064 nm) as the light source. The structure and optical properties were characterized by X-ray diffraction (XRD) and transmittance measurements. The films grown have a polycrystalline wurtzite structure and high transmission in the UV-Vis (300-900) nm. The optical energy gap of ZnO:Mg thin films could be controlled between (3.2eV and 3.9eV). The refractive index of ZnO:Mg thin films decreases with Mg doping. The extinction coefficient and the complex dielectric constant were also investigate.
In this research, an enhancement in lubricating, rheological, and filtration properties of unweighted water-based mud is fundamentally investigated using XC polymer NPs with 0.2gm, 0.5gm, 1gm, 2gm, and 4gm concentrations. Bentonite, that had been used in the preparation of unweighted water-based mud, was characterized using XRF-1800 Sequential X-ray Fluorescence Spectrometer, XRD-6100/7000 X-ray Diffractometer, and Malvern Mastersizer 2000 particle size analyzer, respectively. Lubricating, rheology and filtration properties of unweighted water-based mud were measured at room temperature (35°C) using OFITE EP and Lubricity Tester, OFITE Model 900 Viscometer, and OFITE Low-Pressure Filter Press, respectively. XC Polymer N
... Show MoreTwelve N-(6-sustirured benzothanol-2-y1) succinamic acids and 3-(6-substitted benzonathol-2-y1)-carbamoyl propionyl chloride were synthesized in good yields from reaction of benzonathol2-yl)
Present study was conducted in order to assess Slabiaat water quality by measuring some physical and chemical factors of river water, the study included a choice of three stations along of Slabiaat River in Samawa city, water samples collected a monthly during the period from September 2013 August 2014. The study involved measuring the Air & water temperatures, pH, Electrical conductivity, Total dissolved solids, Dissolved oxygen, Total hardness, calcium hardness, magnesium, turbidity, and some types of bacteria in River water. The study results showed that the values of air & water temperatures have ranged between (20.1-36.6)?C , (10-21.8) in Slabiaat River, respectively . pH values ranged between (6.6-8.7). Electrical conductivity in
... Show MoreThin films of ZnSe arc deposited on glass substrates by thermal evaporation in vacuum with different thickness (1000, 2700, 4000) A° temperature (293-373) °K are studies the electrical properties before and after annealing. The result show decrease D.0 conductivity and increasing the activation energy Eat.