In this study, investigations of structural properties of n-type porous silicon prepared by laser assisted-electrochemical etching were demonstrated. The Photo- electrochemical Etching technique, (PEC) was used to produce porous silicon for n-type with orientation of (111). X-ray diffraction studies showed distinct variations between the fresh silicon surface and the synthesized porous silicon surfaces. Atomic force microscopy (AFM) analysis was used to study the morphology of porous silicon layer. AFM results showed that root mean square (RMS) of roughness and the grain size of porous silicon decreased as etching current density increased. The chemical bonding and structure were investigated by using fourier transformation infrared spectroscopy (FTIR). Porosity of the porous silicon layer and thickness were determined gravimetrically. Increasing the etching current density led to increase the surface porosity and thickness. Porosity between77% and 82% were observed for current densities between 24 mA/cm2 and 116 mA/cm2
It is more beneficial science and created and the highest honor is the Koran Sciences, God has honored research in this fun science, came this research that shed the light on the radical incision, and Naughty derivatives as contained in the Koran, and illustrate the diversity of Saghma morphological, and fork them from derivatives what it entailed connotations, as well as the evacuation of cryptic in some of these verses from the biological secrets take minds newly exposed Anitrjt science under the name of scientific miracles.
The research methodology is revenue verse which included the word, and revenue lexical meaning and its meaning in the context of the Qur'an, and reflect the views of the commentators of the verse, and then the r
Mercury-lead-antimony based superconductors with the formula Hg0.5 Pb0.5xSbxBa2Ca2Cu3O8+δ (x=0, 0.10 and 0.15) have been prepared by useing three step solid state reaction processes. Electrical resistivity, using four probe technique, is used to find the transition temperature Tc. It is found from that sample Hg0.5 Pb0.5Ba2Ca2Cu3O8.437 is semiconductor , sample Hg0.5 Pb0.4Sb0.1Ba2Ca2Cu3O8.353 is normal state with metallic behaviors, while sample Hg0.5 Pb0.35Sb0.15Ba2Ca2Cu3O8.233 is superconducting state with critical transition temperature (Tc) is 126K. X-ray diffraction (XRD) analysis showed a tetragonal structure with decrease in the c-axis lattice constant for the samples doped with Sb as compared with these which have no Sb
... Show MoreThe frog has a highly developed nervous system. It consists of a brain, a spinal cord and nerves. The brain is the only center for the control of all vital activities as it receives impulses from different parts of the body through sensory nerves and issues orders through motor fibers to different parts of the body for appropriate action. The Aims of studyis general morphological structural of the brain and spinal cord in the Iraqi frog Rana ridibunda ridibunda. The brains of twenty of frogs belonging to class Amphibia were studied using conventional techniques of dissecting microscopy. All samples were sacrificed and anesthetized and then they were removed completely from the neurocranium, cranial, sensory nerves and the meninges and trans
... Show MoreThe work included study of external morphology of white cabbage butterfly Pieris rapae (Linnaeus, 1758). The study included the external morphological characters of different body regions in addition to the male and female genitalia. The studied morphological characters were supported by photos and illustrations. Specimens of the work were collected from north and middle of Iraq and dates and sites of collection were fixed.
This work was included external morphological study of male Black veined white butterfly Aporiacrataegi L. 1758. The study involved morphological characters of many body regions, in addition the male genitalia. This morphological characters study supported by illustrations, it should be noted the work specimens were collected from northern Iraq.
Abstract. In this work, Bi2O3 was deposited as a thin film of different thickness (400, 500, and 600 ±20 nm) by using thermal oxidation at 573 K with ambient oxygen of evaporated bismuth (Bi) thin films in a vacuum on glass substrate and on Si wafer to produce n-Bi2O3/p-Si heterojunction. The effect of thickness on the structural, electrical, surface and optical properties of Bi2O3 thin films was studied. XRD analysis reveals that all the as deposited Bi2O3 films show polycrystalline tetragonal structure, with preferential orientation in the (201) direction, without any change in structure due to increase of film thickness. AFM and SEM images are used to investigate the influences of film thickness on surface properties. The optical measur
... Show MoreOne of the main criteria taken by the reader in the correct reading of a statement is the standard morphological, Vabv Eetmisah from the rest of science that examines the word andchanges therein lead to new meanings, which is the rule months in Morphology, every increase in construction lead to an increase in meaning.
Who took behind with the likes of ten readers Morphology a way to show the most rightly reading, to perform the desired effect, it has committed as committed behind bin Hisham statement argument morphological under which the clear sense of the formula of distinguished from Matheladtha of formulas feature to perform their intended meaning. And here that God Almighty was meant to each formula is contained in verse without
The gas sensing properties of undoped Co3O4 and doped with Y2O3 nanostructures were investigated. The films were synthesized using the hydrothermal method on a seeded layer. The XRD, SEM analysis and gas sensing properties were investigated for the prepared thin films. XRD analysis showed that all films were polycrystalline, of a cubic structure with crystallite size of (12.6) nm for cobalt oxide and (12.3) nm for the Co3O4:6% Y2O3. The SEM analysis of thin films indicated that all films undoped Co3O4 and doped possessed a nanosphere-like structure.
The sensi
... Show More