Preferred Language
Articles
/
ijp-745
Influence of substrate temperature on structural and optical properties of SnO2 films

Tin Oxide (SnO2) films have been deposited by spray pyrolysis technique at different substrate temperatures. The effects of substrate temperature on the structural, optical and electrical properties of SnO2 films have been investigated. The XRD result shows a polycrystalline structure for SnO2 films at substrate temperature of 673K. The thickness of the deposited film was of the order of 200 nm measured by Toulansky method. The energy gap increases from 2.58eV to 3.59 eV when substrate temperature increases from 473K to 673K .Electrical conductivity is 4.8*10-7(.cm)-1 for sample deposited at 473K while it increases to 8.7*10-3 when the film is deposited at 673K

View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Mar 01 2021
Journal Name
Iraqi Journal Of Physics
Investigation of Structural, Mechanical, Thermal and Optical Properties of Cu Doped TiO2

In this work, Pure and Cu: doped titanium dioxide nano-powder was prepared through a solid-state method. the dopant concentration [Cu/TiO2 in atomic percentage (wt%)] is derived from 0 to 7 wt.%. structural properties of the samples performed with XRD revealed all nanopowders are of titanium dioxide having polycrystalline nature. Physical and Morphological studies were conducted using a scanning electronic microscope SEM test instrument to confirm the grain size and texture. The other properties of samples were examined using an optical microscope, Lee's Disc, Shore D hardness instrument, Fourier-transform infrared spectroscopy (FTIR), and Energy-dispersive X-ray spectroscopy (EDX). Results showed that the thermal conductivity

... Show More
Crossref (4)
Crossref
View Publication Preview PDF
Publication Date
Thu Apr 28 2022
Journal Name
Iraqi Journal Of Science
Study of the Influence of Different Optical Properties on the Image of Compound light microscope

Microscope images are characterized by a number of specific parameters, the influence of such parameters (intensity, magnification, numerical aperture, diaphragms aperture, segmentation, and edge detecting technique) on measurement in optical microscope images have been determined with using a powerful image processing methods. As one of the most widespread techniques in biological investigation and dynamic process, light compound microscopy has used to analyze the optical properties of biological images. The results indicate that a wide aperture allows maximum resolution and depth of field, but decreases the contrast. While a small aperture improve visibility and contrast but decreases the resolution. The results also show the best perf

... Show More
View Publication Preview PDF
Publication Date
Wed Sep 01 2021
Journal Name
Iraqi Journal Of Physics
The Effect of Etching Time On Structural Properties of Porous Quaternary AlInGaN Thin Films

Using photo electrochemical etching technique (PEC), porous silicon (PS) layers were produced on n-type silicon (Si) wafers to generate porous silicon for n-type with an orientation of (111) The results of etching time were investigated at: (5,10,15 min). X-ray diffraction experiments revealed differences between the surface of the sample sheet and the synthesized porous silicon. The largest crystal size is (30 nm) and the lowest crystal size is (28.6 nm) The analysis of Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscope (FESEM) were used to research the morphology of porous silicon layer. As etching time increased, AFM findings showed that root mean square (RMS) of roughness and po

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Fri Jan 11 2019
Journal Name
Iraqi Journal Of Physics
Structural and optical properties for PVA- PEG-MnCl2 composites

Polymer films of PEG and PVA and their blend with different
concentrations of MnCl2 (0, 2, 4, 6 and 10 %.wt) were study using
casting technique. The X-ray spectra of pure PEG, PVA and
PVA:PEG films and with addition of 2% concentrations from
(MnCl2) show amorphous structures. The results for FTIR show the
interaction between the filler and polymer blend results in
decreasing crystallinity with rich amorphous phase. This
amorphous nature confirms the complexation between the filler and
the polymer blend. The optical properties of (PVA:PEG/MnCl2)
contain the recording of absorbance (A) and explain that the
absorption coefficient (α), refractive index (n), extinction coefficient
(ko) and the dielectric cons

... Show More
Crossref (4)
Crossref
View Publication Preview PDF
Publication Date
Sat Jan 05 2019
Journal Name
Iraqi Journal Of Physics
Annealing effect on the optical properties of organic semiconductor Alq3: C60 blend thin films

The effect of heat treatment using different annealing temperatures on optical properties of bulk heterojunction blend (BHJ) Alq3: C60 thin films which are fabricated by the spin coating technique were investigated in this study. The films have been coated on a glass substrate with speed of 2000 rpm for one min and treated with different annealing temperature (373, 423 and 473) K under vacuum. The optical properties and the chemical bonds structure of blends as-deposited and heat treated have been studied by UV-Vis spectroscopic and Fourier Transform-Infra Red (FTIR) measurements respectively. The results of UV visible show that the optical energy gap decreasing with increasing the annealing temperature for the ratio (100:1) while decrea

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Sun Sep 07 2008
Journal Name
Baghdad Science Journal
Study the effect of thickness and annealing temperature on the Electrical Properties of CdTe thin Films

The electrical properties of polycrystalline cadmium telluride thin films of different thickness (200,300,400)nm deposited by thermal evaporation onto glass substrates at room temperature and treated at different annealing temperature (373, 423, 473) K are reported. Conductivity measurements have been showed that the conductivity increases from 5.69X10-5 to 0.0011, 0.0001 (?.cm)-1 when the film thickness and annealing temperature increase respectively. This increasing in ?d.c due to increasing the carrier concentration which result from the excess free Te in these films.

Crossref
View Publication Preview PDF
Publication Date
Sun Oct 01 2023
Journal Name
Solid State Communications
Influence of In-dopant on the optoelectronic properties of thermal evaporated CuAlTe2 films

In the current study, CuAl0.7In0.3Te2 thin films with 400 nm thickness were deposited on glass substrates using thermal evaporation technique. The films were annealed at various annealing temperatures of (473,573,673 and 773) K. Furthermore, the films were characterized by X-ray Diffraction spectroscopy (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and Ultra violet-visible (UV–vis). XRD patterns confirm that the films exhibit chalcopyrite structure and the predominant diffraction peak is oriented at (112). The grain size and surface roughness of the annealed films have been reported. Optical properties for the synthesized films including, absorbance, transmittance, dielectric constant, and refr

... Show More
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
View Publication
Publication Date
Sun Oct 01 2023
Journal Name
Solid State Communications
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Feb 20 2019
Journal Name
Iraqi Journal Of Physics
Synthesis, characterization, and optical properties of copper oxide thin films obtained by spray pyrolysis deposition

     Copper oxide thin films were synthesized by using spray pyrolysis deposition technique, in the temperature around 400°C in atmosphere from alcoholic solutions. Copper (II) chloride as precursor and glass as a substrate. The textural and structural properties of the films were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD). The average particle size determined from the AFM images ranged from 30 to 90 nm and the roughness average was equal to 9.3 nm. The XRD patterns revealed the formation of a polycrystalline hexagonal CuO. The absorption and transmission spectrum, band gap, film thickness was investigated. The films were tested as an

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Wed Dec 18 2019
Journal Name
Bulletin Of Materials Science
Scopus (1)
Crossref (2)
Scopus Clarivate Crossref
View Publication