Compounds were prepared from In2O3 doped SnO2 with different doping ratio by mixing and sintering at 1000oC. Pulsed Laser Deposition PLD was used to deposit thin films of different doping ratio In2O3: SnO2 (0, 1, 3, 5, 7 and 9 % wt.) on glass and p-type wafer Si(111) substrates at ambient temperature under vacuum of 10-3 bar thickness of ~100nm. X-ray diffraction and atomic force microscopy were used to examine the structural type, grain size and morphology of the prepared thin films. The results show the structures of thin films was also polycrystalline, and the predominate peaks are identical with standard cards ITO. On the other side the prepared thin films declared a reduction of degree of crystallinity with the increase of doping ratio. Atomic Force Microscopy (AFM) measurements show the average grain size exhibit to change in non-systematic manner with the increase of doping ratio with tin oxide. The average grain size increases at doping ratios 1, 5 and 7 % from 52.48 to 79.12, 87.57, and 105.59 nm respectively and decreases at residual doping ratio. The average surface roughness increases from 0.458 to 26.8 nm with the increase of doping ratio. The gas sensing measurements of In2O3:SnO2 thin films prepared on p-Si to NO2 gas showed good sensitivity and Maximum sensitivity (50) obtained for In2O3:SnO2 prepared on p-Si at operating temperature 573 K and doping ratio 7 % and 9 %. Maximum speed of response time (8 sec) at operating temperature 573 K and doping ratio 1 %.
In this study, tin oxide (SnO2) and mixed with cadmium oxide (CdO) with concentration ratio of (5, 10, 15, 20)% films were deposited by spray pyrolysis technique onto glass substrates at 300ºC temperature. The structure of the SnO2:CdO mixed films have polycrystalline structure with (110) and (101) preferential orientations. Atomic force microscopy (AFM) show the films are displayed granular structure. It was found that the grain size increases with increasing of mixed concentration ratio. The transmittance in visible and NIR region was estimated for SnO2:CdO mixed films. Direct optical band gap was estimated for SnO2 and SnO2 mixed CdO and show a decrease in the energy gap with increasing mixing ratio. From Hall measurement, it was fou
... Show MoreAn NH3 gas sensor was prepared from nanocomposite films of indium oxide-copper oxide mixtures with ratios of 0 , 10 , and 20 Vol % of copper oxide. The films were deposited on a glass substrate using chemical spray pyrolysis method (CSP) at 400oC. The structural properties were studied by using X-ray diffraction (XRD) and atomic force microscopy ( AFM). The structural results showed that the prepared thin films are polycrystalline, with nano grain size. By mixing copper oxide with indium oxide, the grain size of the prepared thin films was decreased and the surface roughness was increased. The UV-Visible spectrometer analysis showed that the prepared thin films have high transmittance.
... Show MoreTin dioxide (SnO2) were mixed with (TiO2 and CuO) with concentration ratio (50, 60, 70, 80 and 90) wt% films deposited on single crystal Si and glass substrates at (523 K) by spray pyrolysis technique from aqueous solutions containing tin (II) dichloride Dihydrate (SnCl2, 2H2O), dehydrate copper chloride (CuCl2.2H2O) and Titanium(III) chloride (TiCl3) with molarities (0.2 M). The results of electrical properties and analysis of gas sensing properties of films are presented in this report. Hall measurement showed that films were n-type converted to p- type as titanium and copper oxide added at (50) % ratio. The D.C conductivity measurements referred that there are two mechanisms responsible about the conductivity, hence it possess two act
... Show MoreIn this work, the effect of atomic ratio on structural and optical properties of SnO2/In2O3 thin films prepared by pulsed laser deposition technique under vacuum and annealed at 573K in air has been studied. Atomic ratios from 0 to 100% have been used. X-ray diffraction analysis has been utilized to study the effect of atomic ratios on the phase change using XRD analyzer and the crystalline size and the lattice strain using Williamson-Hall relationship. It has been found that the ratio of 50% has the lowest crystallite size, which corresponds to the highest strain in the lattice. The energy gap has increased as the atomic ratio of indium oxide increased.
The physical and morphological characteristics of porous silicon (PS) synthesized via gas sensor was assessed by electrochemical etching for a Si wafer in diluted HF acid in water (1:4) at different etching times and different currents. The morphology for PS wafers by AFM show that the average pore diameter varies from 48.63 to 72.54 nm with increasing etching time from 5 to 15min and from 72.54 to 51.37nm with increasing current from 10 to 30 mA. From the study, it was found that the gas sensitivity of In2O3: CdO semiconductor, against NO2 gas, directly correlated to the nanoparticles size, and its sensitivity increases with increasing operating temperature.
In this research thin films from SnO2 semiconductor have been prepared by using chemical pyrolysis spray method from solution SnCl2.2H2O at 0.125M concentration on glass at substrate temperature (723K ).Annealing was preformed for prepared thin film at (823K) temperature. The structural and sensing properties of SnO2 thin films for CO2 gas was studied before and after annealing ,as well as we studied the effect temperature annealing on grain size for prepared thin films .
In this work, a (CdO)0.94:(In2O3)0.06 film was developed on a glass substrate using Q- switching pulse laser beam (Nd:YAG; wavelength 1064 nm). The quantitative elemental analysis of the (CdO)0.94:(In2O3)0.06 thin film was achieved using energy dispersive X- ray diffraction (EDX). The topological and morphological properties of the deposited thin film were investigated using atomic force microscope (AFM) and field emission scan electron microscopy (FESEM). The I-V characteristic and Hall effect of (CdO)0.94 :(In2O3)0.06 thin films were used to study the electrical properties. The gas sensor prope
... Show MoreThin films of iridium doped indium oxide (In2O3:Eu)with different doping ratio(0,3,5,7,and 9%) are prepared on glass and single crystal silicon wafer substrates using spray pyrolysis method. The goal of this research is to investigate the effect of doping ratio on of the structural, optical and sensing properties . The structure of the prepared thin films was characterized at room temperature using X-ray diffraction. The results showed that all the undoped and doped (In2O3:Eu)samples are polycrystalline in structure and nearly stoichiometric. UV-visible spectrophotometer in the wavelength range (200-1100nm)was used to determine the optical energy gap and optical constants. The optical transmittance of 83% and the optical band gap of 5.2eV
... Show More The behaviour of the electrical conductivity (σ) and the activation energies (Ea1, Ea2) have been investigated on a-InAs thin films as a function of thickness (250,350,450,550,650) nm, before and after heat treatment. The films were annealed at (373, 423, 473) K for one hour. The films contain two types of transport mechanisms, and the electrical conductivity (σ) increases whereas the activation energy (Ea) would decrease as the films thickness increases.
Thin films ZrO2: MgO nanostructure have been synthesized by a radio frequency magnetron plasma sputtering technique at different ratios of MgO (0,6, 8 and 10)% percentage to be used as the gas sensor for nitrogen dioxide NO2. The samples were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) and sensing properties were also investigated. The average particle size of all prepared samples was found lower than 33.22nm and the structure was a monoclinic phase. The distribution of grain size was found lower than36.3 nm and uninformed particles on the surface. Finally, the data of sensing properties have been discussed, where the
... Show More