Solutions of dyes Rhodamine 6G (Rh6G) and Coumarin480(C480) were prepared at five concentrations (1x10-3, 5x10-4, 1x10-4, 5x10-5 and1x10-5) mol/l, the mixing was stirred to obtain on a homogenous solution, the(poly methyl-methacrylate) (PMMA) was solved by chloroform solvent with certain ratio, afterward (PMMA+Rh6G) and (PMMA+C480) thin films were prepared by casting method on glass block which has substrate with dimensions (7.5 x2.5)cm2, the prepared samples were left in dark place at room temperature for 24 hours to obtain uniform and homogenous thin films. UV-VIS absorption spectra, transmission spectra and fluorescence spectra were done to measure linear refractive index and linear absorption coefficient. The nonlinear optical properties of the prepared thin films were measured by z-scan technique. Two cases were measured: the first case is the closed-aperture z-scan to measure the nonlinear refractive index and the second case is open-aperture z-scan to measure the nonlinear absorption coefficient. The two cases were performed at two wavelengths 532 nm and 1064 nm and at two input fluences.
The influence of different thickness (500,750, and 1000) nm on the structure properties electrical conductivity and hall effect measurements have been investigated on the films of copper indium selenide CuInSe2 (CIS) the films were prepared by thermal evaporation technique on glass substrates at RT from compound alloy. The XRD pattern show that the film have poly crystalline structure a, the grain size increasing with as a function the thickness. Electrical conductivity (σ), the activation energies (Ea1,Ea2), hall mobility and the carrier concentration are investigated as function of thickness. All films contain two types of transport mechanisms of free carriers increase films thickness. The electrical conductivity increase with thickness
... Show MoreCopper tin sulfide (Cu2SnS3) thin films have been grown on glass
substrate with different thicknesses (500, 750 and 1000) nm by flash
thermal evaporation method after prepare its alloy from their
elements with high purity. The as-deposited films were annealed at
473 K for 1h. Compositional analysis was done using Energy
dispersive spectroscopy (EDS). The microstructure of CTS powder
examined by SEM and found that the large crystal grains are shown
clearly in images. XRD investigation revealed that the alloy was
polycrystalline nature and has cubic structure with preferred
orientation along (111) plane, while as deposited films of different
thickness have amorphous structure and converted to polycrystalline
The electronic properties and Hall effect of thin amorphous Si1-xGex:H films of thickness (350 nm) have been studied such as dc conductivity, activation energy, Hall coefficient under magnetic field (0.257 Tesla) for measuring carrier density of electrons and holes and Hall mobility as a function of germanium content (x = 0–1), deposition temperature (303-503) K and dopant concentration for Al and As in the range (0-3.5)%. The composition of the alloys and films were determined by using energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS).
This study showed that dc conductivity of a-Si1-xGex:H thin films is found to increase with increasing Ge content and dopant concentration, whereas conductivity activati
A particulate composite material was prepared by adding the Titanium dioxide (TiO2) with a particle size of (75-150) µm to Epoxy resin at weight percentage of (10%,20%,30%,40%,50%).The following some mechanical properties were studied,fracture toughness, hardness.casting preparation methods were used in this study includes preparing plate of matrix and composites. specimens were prepared according to ASTM for the Mechanical properties tests. After that Another samples were heat treated for three and six hour at 65C?. Fracture toughness (Kic) represent for stress intensity factor results were showed that the curve of three hours aging increases in fracture toughness (Kic) for composites but for six hours aging increases fracture tough
... Show MoreFabrication of a photodetector consists of the conjugated polymer "MEH-PPV"- poly (2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenlenevinylene) and MEH-PPV:MWCNT nanocomposite thin film. The volume ratio investigated was 0.75:0.25. MEH-PPV was dissolved in chloroform solvent and doped with MWCNTs. The spin coating method was used to achieve a facile and low cost photodetector. The absorption spectrum decreases by adding the CNTs. The PL spectrum detected recombination curve results by doping the polymer with CNTs, and AFM measurement showed an increase of roughness average from (0.168 to 2.43nm) of "MEH-PPV" and "MEH-PPV:CNTs", respectively. The doping ratio 0.25, which has a higher photoresponsivity, was evaluated at 1.70 A/W and 2.14 A/W of th
... Show MoreSolar cells has been assembly with electrolytes including I−/I−3 redox duality employ polyacrylonitrile (PAN), ethylene carbonate (EC), propylene carbonate (PC), with double iodide salts of tetrabutylammonium iodide (TBAI) and Lithium iodide (LiI) and iodine (I2) were thoughtful for enhancing the efficiency of the solar cells. The rendering of the solar cells has been examining by alteration the weight ratio of the salts in the electrolyte. The solar cell with electrolyte comprises (60% wt. TBAI/40% wt. LiI (+I2)) display elevated efficiency of 5.189% under 1000 W/m2 light intensity. While the solar cell with electrolyte comprises (60% wt. LiI/40% wt. TBAI (+I2)) display a lower efficiency of 3.189%. The conductivity raises with the
... Show MoreIn this study, silver-tungsten oxide core–shell nanoparticles (Ag–WO3 NPs) were synthesized by pulsed laser ablation in liquid employing a (1.06 µm) Q-switched Nd:YAG laser, at different Ag colloidal concentration environment (different core concentration). The produced Ag–WO3 core–shell NPs were subjected to characterization using UV–visible spectrophotometry, X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive spectroscopy, electrical analysis, and photoluminescence PL. The UV–visible spectra exhibited distinct absorption peaks at around 200 and 405 nm, which attributed to the occurrence of surface Plasmon reson
In this research prepare membranes pure silicon carbide (SiC) as well as gas Alloy (ammonia) and using a laser was leaked membrane of glass flooring. To Drasesh optical properties of membranes prepared depending on the technique (Swanepoel) and Adhrt results obtained in general increased permeability pure silicon membranes
There is no doubt that optical fiber technology is one of the most important stages of the communications revolution at all and it is of utmost importance in our daily life. In this work, five fibers with core radii 2.5, 4.5 and 6.5–8.5 μm were designed. The properties of all guided modes have been calculated at a wavelength of 1550 nm by using RP Fiber Calculator. A single-mode fiber is obtained when the core radius approaches the wavelength. As the core radius is increased, the fiber becomes a multimode. The percentage power in the core increases with increasing core radius. The modes profiles were illustrated and compared with the modern references.