The paper presents an overview of theoretical aspects of small radio telescope antenna parameters. The basic parameters include antenna beamwidth, antenna gain, aperture efficiency, and antenna temperature. These parameters should be carefully studied since they have vital effects on astronomical radio observations. The simulations of antenna parameters were carried out to assess the capability and the efficiency of small radio telescopes to observe a point source at a specific frequency. Two-dimensional numerical simulations of a uniform circular aperture antenna are implemented at different radii. The small diameter values are chosen to be varied between (1-10) m. This study focuses on a small radio telescope with a diameter of 3 m since this telescope is very common in the world. The simulated results of this study illustrated that the power pattern of a 3 m antenna has a half-power beamwidth of approximately 5 degrees. Also, the maximum peak antenna temperature is estimated to be more than 3000 K. All of these results were in good agreement with observations of the neutral hydrogen spectral line at the frequency of 1.42 GHz using a small radio telescope.
In this paper the elevation angle of Jupiter at Baghdad location according to its coordinate for the period (2005-2020) has been studied. The Radio Jove pro. Edition program is used to achieve the Jupiter elevation angle at this time period. In 2007, 2008 the path of Jupiter is appeared near the horizon when the monitor trying to observe it. While in 2013, 2014 it's reached its maximum value then its return to reached its minimum value at 2019, 2020 according to the position of Jupiter in Baghdad for this period.
This study uses the optical emission spectroscopy (OES) technique to find the lead(Pb) and sulfur (S) plasma parameters employing a pulse of Nd: YAG laser (Q-switched 1064nm wavelength) and different laser energies of (400,500,600 and 700 mJ). The electron temperature Te (eV) is calculated using the Boltzmann-Plot method, and the electron density ne (cm-3)is determined by the Stark broadened way. Moreover, Debye length λD (cm) and plasma frequency ωp (Hz) are studied as a function of laser energy. An apparent increase was noted in the electron temperature of lead plasma and a decrease in sulfur plasma. The results also showed that each increase in the laser intensity causes an incr
... Show MoreNonlinear regression models are important tools for solving optimization problems. As traditional techniques would fail to reach satisfactory solutions for the parameter estimation problem. Hence, in this paper, the BAT algorithm to estimate the parameters of Nonlinear Regression models is used . The simulation study is considered to investigate the performance of the proposed algorithm with the maximum likelihood (MLE) and Least square (LS) methods. The results show that the Bat algorithm provides accurate estimation and it is satisfactory for the parameter estimation of the nonlinear regression models than MLE and LS methods depend on Mean Square error.
In this paper, Bayes estimators for the shape and scale parameters of Gamma distribution under the Entropy loss function have been obtained, assuming Gamma and Exponential priors for the shape and scale parameters respectively. Moment, Maximum likelihood estimators and Lindley’s approximation have been used effectively in Bayesian estimation. Based on Monte Carlo simulation method, those estimators are compared depending on the mean squared errors (MSE’s). The results show that, the performance of the Bayes estimator under Entropy loss function is better than other estimates in all cases.
The characterization of ZnO and ZnO:In thin films were confirmed by spray pyrolysis technique. The films were deposited onto glass substrate at a temperature of 450°C. Optical absorption measurements were also studied by UV-VIS technique in the wavelength range 300-900 nm which was used to calculate the optical constants. The changes in dispersion and Urbach parameters were investigated as a function of In content. The optical energy gap was decreased and the wide band tails were increased in width from 616 to 844 eV as the In content increased from 0wt.% to 3wt.%. The single–oscillator parameters were determined also the change in dispersion was investigated before and after doping.
In this work, the effect of laser energy on the properties of a calcium plasma generated by a Q-switched Nd: YAG laser at the fundamental wavelength was studied using spectroscopy. The Boltzmann plot and Stark broadening method were used to measure the main plasma parameters (electron temperature and electron density). The electron temperature ranged ( 0.169 -0.172 ) eV, the electron density ranged ( 2.10 – 2.63 ) for laser energy range of ( 400 – 700) mJ. Other basic plasma properties were also measured, including the Debye length, the number of particles in the Debye sphere, and the plasma frequency. Laser energy affects all plasma parameters, according to our results.
This study aims to classify the critical points of functions with 4 variables and 8 parameters, we found the caustic for the certain function with the spreading of the critical points. Finally, as an application, we found the bifurcation solutions for the equation of sixth order with boundary conditions using the Lyapunov-Schmidt method in the variational case.
Thalassemia is a term that refers to a group of genetic disorders characterized by a defect in the synthesis of hemoglobin. It is sometimes called Mediterranean anemia. Many biochemical changes in the blood accompany this disease. In this research, some biochemical parameters were measured in thalassemic patients and compared with healthy control group. These parameters include serum Iron, ferritin, TIBC, hemoglobin, uric acid, albumin, calcium, transferrin, and transferrin saturation percentage. The results of the research showed that there is a significant increase (P<0.05) in serum iron and ferritin in thalassemic patients group in comparison with healthy control group. A significant decrease (P<0.05) in serum uric a
... Show MoreBackground: Among individuals who have a stenotic aortic valve, a precise assessment of aortic valve area is essential for clinical judgment. So far, no studies have been conducted to investigate and assess the role of the three dimensional echo-cardiography in the assessment of the valve stenosis. This study aims to compare and assess the precision of the measurement of the stenosis area of the aortic valve by 2D versus 3D echo-cardiography.
The parameters of resistance spot welding (RSW) performed on low strength commercial aluminum sheets are investigated experimentally, the performance requirements and weldability issues were driven the choice of a specific aluminum alloy that was AA1050. RSW aluminum alloys has a major problem of inconsistent quality from weld to weld comparing with welding steel
alloys sheet, due to the higher thermal conductivity, higher thermal expansion, narrow plastic temperature range, and lower electrical resistivity. Much effort has been devoted to the study of describing the relation between the parameters of the process (welding current, welding time, and electrode force) and weld strength. Shear-tensile strength tests were performed to ind