The present work aims to fabricate n-i-p forward perovskite solar cell (PSC) withئ structure (FTO/ compact TiO2/ compact TiO2/ MAPbI3 Perovskite/ hole transport layer/ Au). P3HT, CuI and Spiro-OMeTAD were used as hole transport layers. A nano film of 25 nm gold layer was deposited once between the electron transport layer and the perovskite layer, then between the hole transport layer and the perovskite layer. The performance of the forward-perovskite solar cell was studied. Also, the role of each electron transport layer and the hole transport layer in the perovskite solar cell was presented. The structural, morphological and electrical properties were studied with X-ray diffractometer, field emission scanning electron microscope and current-voltage (J-V) characteristic curves, respectively. J-V curves revealed that the deposition of the Au layer between the electron transport layer (ETL) and Perovskite layer (PSK) reduced the power conversion efficiency (PCE) from 3% to 0.08% when one layer of C. TiO2 is deposited in the PSC and to 0.11% with two layers of C. TiO2. Power conversion efficiency, with CuI as the hole transport layer (HTL), showed an increase from 0.5% to 2.7% when Au layer was deposited between PSK and CuI layers. Also, Isc increased from 6.8 mA to 17.4 mA and Voc from 0.3 V to 0.5V. With depositing Au layer between P3HT and PSK layers, the results showed an increase in the efficiency from 1% to 2.6% and an increase in Isc from 10.7 mA to 30.5 mA, while Voc decreased from 0.75 V to 0.5V
The aim of this thesis is to introduce a new concept of fibrewise topological spaces which is said to be fibrewise slightly topological spaces. We generalize some of the main results that have been reached from fibrewise topology into fibrewise slightly topological space. We introduce the concepts of fibrewise slightly closed, fibrewise slightly open, fibrewise locally sliceable, and fibrewise locally sectionable slightly topological spaces. Also, state and prove several propositions related to these concepts. On the other hand, extend separation axioms of ordinary topology into fibrewise setting. The separation axioms are said to be fibrewise slightly T_0 spaces, fibrewise slightly T_1 spaces, fibrewise slightly R_0 spaces, fibrewise s
... Show MoreIn this paper introduce some generalizations of some definitions which are, closure converge to a point, closure directed toward a set, almost ω-converges to a set, almost condensation point, a set ωH-closed relative, ω-continuous functions, weakly ω-continuous functions, ω-compact functions, ω-rigid a set, almost ω-closed functions and ω-perfect functions with several results concerning them.