This work aims to study the exploding copper wire plasma parameters by optical emission spectroscopy. The emission spectra of the copper plasma have been recorded and analyzed The plasma electron temperature (Te), was calculated by Boltzmann plot, and the electron density (ne) calculated by using Stark broadening method for different copper wire diameter (0.18, 0.24 and 0.3 mm) and current
of 75A in distilled water. The hydrogen (Hα line) 656.279 nm was used to calculate the electron density for different wire diameters by Stark broadening. It was found that the electron density ne decrease from 22.4×1016 cm-3 to 17×1016 cm-3 with increasing wire diameter from 0.18 mm to 0.3 mm while the electron temperatures increase from 0.741 to 0.897 eV for the same wire diameters. The optical emission spectrum (OES) emitted from the plasma have Hα line, small peak at 590 nm corresponding to sodium and others peaks belong to Cu I. The relationship between the plasma electron temperature, emission line intensity and number density with the formed copper nanoparticles size and concentration were studied. It was found that the nanoparticles concentration increase with emission line intensity while its size decrease. It can be conclude the existence of a controlled relationship between the plasma parameters and the formed nanoparticles concentration and size.
The variety of clean energy sources has risen, involving many resources, although their fundamental principles remain consistent in terms of energy generation and pollution reduction. The using of hydropower system for energy production also has a dynamic impact in which it utilizes to harness the water for the purpose of energy production. As it is important to overcome the problem of accidents in the highway and rural areas in the case of server rainfall and flood by implementation a smart system that used for energy production. This paper aims to develop a controlled hydropower system installed in the drainage sinks allocated in highway roads used for producing. The proposed system consists of storage unit represented by pipes used for t
... Show MoreAn optical spectroscopic study is reported in this article to study the correlation between the supermassive black hole (SMBH) and the star formation rate (SFR) for a sample of Seyfert galaxies type (I and II). The study focused on 45 galaxy of Seyfert 1, in addition to 45 galaxy of Seyfert 2, where these samples have been selected form different survey of Salon Digital Sky Survey (SDSS). The redshift (z) of these objects were between (0.02 – 0.26). The results of Seyfert 1 galaxies shows that there good correlation between the SMBH and the SFR depending on statistical analysis parameter named Spearman’s Rank Correlation in a factor of (ρ=0.609), as well as the Seyfert 2 galaxies results show a good correlation between the SMBH and
... Show MoreAn optical spectroscopic study is reported in this article to study the correlation between the supermassive black hole (SMBH) and the star formation rate (SFR) for a sample of Seyfert galaxies type (I and II). The study focused on 45 galaxy of Seyfert 1, in addition to 45 galaxy of Seyfert 2, where these samples have been selected form different survey of Salon Digital Sky Survey (SDSS). The redshift (z) of these objects were between (0.02 – 0.26). The results of Seyfert 1 galaxies shows that there good correlation between the SMBH and the SFR depending on statistical analysis parameter named Spearman’s Rank Correlation in a factor of (ρ=0.609), as well as the Seyfert 2 galaxies results show a good correlation between the SMBH
... Show MoreIn this paper, the dynamic of quark and anti-quark interaction has been used to study the production of photons in the annihilation process based on the theory of chromodynamic. The rate of the photon is to be calculated for charm and anti-strange interaction c→γg system with critical temperature 113 and 130 MeV and photon energy GeV/c. Here the critical temperature, strength coupling and photons energy are assumed to be affected dramatically on the rate of photons emission of state interaction c, which can form gluon possible structures and photon emission state. The decreased photons emission yields with increased strength couple of quarks reaction due to increase critical temperature from 113 MeV to 130 MeV were predicted. We
... Show MoreMethods of estimating statistical distribution have attracted many researchers when it comes to fitting a specific distribution to data. However, when the data belong to more than one component, a popular distribution cannot be fitted to such data. To tackle this issue, mixture models are fitted by choosing the correct number of components that represent the data. This can be obvious in lifetime processes that are involved in a wide range of engineering applications as well as biological systems. In this paper, we introduce an application of estimating a finite mixture of Inverse Rayleigh distribution by the use of the Bayesian framework when considering the model as Markov chain Monte Carlo (MCMC). We employed the Gibbs sampler and
... Show MoreThis paper including a gravitational lens time delays study for a general family of lensing potentials, the popular singular isothermal elliptical potential (SIEP), and singular isothermal elliptical density distribution (SIED) but allows general angular structure. At first section there is an introduction for the selected observations from the gravitationally lensed systems. Then section two shows that the time delays for singular isothermal elliptical potential (SIEP) and singular isothermal elliptical density distributions (SIED) have a remarkably simple and elegant form, and that the result for Hubble constant estimations actually holds for a general family of potentials by combining the analytic results with data for the time dela
... Show MoreVisible Light Communication (VLC) has emerged as a powerful technique for wireless communication systems. Providing high data rate and increasing capacity are the major problems in VLC. Recent evidence suggests that Multiple Input Multiple Output (MIMO) technique can offers improved data rates and increased link range. This paper describes the design and implementation of visible light communication system in indoor environment exploring the benefits of MIMO. The specific objective of this research was to implement a 4× 4 Multiple Input (LEDs) Multiple Output (photodetectors)-VLC communication system, where a 16 white power LEDs in four arrays are setting up at transmitter and four RX modules are setting up at receiver side without the nee
... Show MoreThe water quality index is the most common mathematical way of monitoring water characteristics due to the reasons for the water parameters to identify the type of water and the validity of its use, whether for drinking, agricultural, or industrial purposes. The water arithmetic indicator method was used to evaluate the drinking water of the Al-Muthana project, where the design capacity was (40000) m3/day, and it consists of traditional units used to treat raw water. Based on the water parameters (Turb, TDS, TH, SO4, NO2, NO3, Cl, Mg, and Ca), the evaluation results were that the quality of drinking water is within the second category of the requirements of the WHO (86.658%) and the first category of the standard has not been met du
... Show MoreThe water quality index is the most common mathematical way of monitoring water characteristics due to the reasons for the water parameters to identify the type of water and the validity of its use, whether for drinking, agricultural, or industrial purposes. The water arithmetic indicator method was used to evaluate the drinking water of the Al-Muthana project, where the design capacity was (40000) m3/day, and it consists of traditional units used to treat raw water. Based on the water parameters (Turb, TDS, TH, SO4, NO2, NO3, Cl, Mg, and Ca), the evaluation results were that the quality of drinking water is within the second category of the requirements of the WHO (86.658%) and the first category of the standard has not
... Show MoreA series of batch demulsification runs were carried out to evaluate the final emulsified water content of emulsion samples after the exposure to microwave. An experimental study was conducted to evaluate the effects of a set of operating variables on the demulsification performance. Several microwave irradiation demulsification runs were carried out at different irradiation powers (700, 800, and 900 watt), using water-in-oil emulsion samples containing different water contents (20-80%, 30-70%, and 50-50%) and salt contents (10000, 20000, and 30000 ppm). It was found that the best separation efficiency was obtained at 900watt, 50% water content and 160 s of irradiation time. Experimental results showed that microwave radiation method can
... Show More