Preferred Language
Articles
/
fRbs0IcBVTCNdQwCO2IX
Electron Contribution to Stopping Power in Burning Plasma
...Show More Authors

The dependence of the energy losses or the stopping power for the energies and the related penetrating factor are arrive by using a theoretical approximation models. in this work we reach a compatible agreement between our results and the corresponding experimental results.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Oct 01 2018
Journal Name
Arpn Journal Of Engineering And Applied Sciences
Achieving a theoretical approximation characterize the stopping power of heavy ion in D-T plasma
...Show More Authors

The dependence of the energy losses or the stopping power for the ion contribution in D- T hot plasma fuels upon the corresponding energies and the related penetrating factorare arrive by using by a theoretical approximation models. In this work we reach a compatible agreement between our results and the corresponding experimental results.

View Publication Preview PDF
Scopus
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
Stopping power and range calculations of protons in human tissues
...Show More Authors

In this research, the stopping power and range of protons in biological human soft and hard tissues (blood, brain, skeleton-cortical bone, and skin) of both child and adult are calculated at the energies ranging from 1MeV to 350 MeV. The data is collected from ICRU Report 46 and calculated the stopping power employing the Bethe formula. Moreover, the simple integration (continuous slowing down approximation) method is employed for calculating protons range at the target. Then, the stopping power and range of protons value in human tissues have been compared with the program called SRIM. Moreover, the results of the stopping power vs energy and the range vs energy have been presented graphically. Proper agreement is found between the gain

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Wed Dec 11 2019
Journal Name
Aip Conference Proceedings
Mass stopping power of alpha particles in liquid water and some gases
...Show More Authors

The interaction of charged particles with the chemical elements involved in the synthesis of human tissues is one of the modern techniques in radiation therapy. One of these charged particles are alpha particles, where recent studies have confirmed their ability to generate radiation in a highly toxic localized manner because of its high ionization and short its range. In this work, We focused our study on the interaction of alpha particles with liquid water; since the water represents over 80% of the most-soft tissues, as well as, hydrogen, oxygen, and nitrogen ,because they are key chemical elements involved in the synthesis of most human tissues. The mass stopping powers of alpha particle with HଶO , COଶ, Oଶ, Hଶ and Nଶhave

... Show More
Publication Date
Tue Sep 11 2018
Journal Name
Iraqi Journal Of Physics
Inelastic mean free path of swift electrons and stopping power in Ta2O5
...Show More Authors

Energy Loss Function (ELF) of 2 5 Ta O derived from optical limit
and extended to the total part of momentum and their energy
excitation region ELF plays an important function in calculating
energy loss of electron in materials. The parameter Inelastic Mean
Free Path (IMFP) is most important in quantitative surface sensitive
electron spectroscopies, defined as the average distance that an
electron with a given energy travels between successive inelastic
collisions. The stopping cross section and single differential crosssection
SDCS are also calculated and gives good agreement with
previous work.

View Publication Preview PDF
Crossref
Publication Date
Tue Oct 29 2019
Journal Name
Journal Of Engineering
Demand Priority in a Power System With Wind Power Contribution Load Shedding Scheme Based
...Show More Authors

The load shedding  scheme has been extensively implemented as a fast solution for unbalance conditions. Therefore, it's crucial to investigate supply-demand balancing in order to protect the network from collapsing and to sustain stability as possible, however its implementation is mostly undesirable. One of the solutions to minimize the amount of load shedding is the integration renewable energy  resources, such as wind power, in the electric power generation could contribute significantly to minimizing power cuts as it is ability to positively improving the stability of the electric grid. In this paper propose a method for shedding the load base on the priority demands with incorporating the wind po

... Show More
View Publication Preview PDF
Crossref (8)
Crossref
Publication Date
Mon Apr 01 2019
Journal Name
International Journal Of Research - Granthaalayah
CALCULATION OF THE STOPPING POWER OF ALPHA PARTICLES AND ITS RANGE IN BONE TISSU
...Show More Authors

With the advancement of modern radiotherapy technology, radiation dose and dose distribution have significantly improved. as part of Natural development, interest has recently been renewed by treatment, especially in the use of heavy charged particles, because these radiation types serve theoretical advantages in all biological and physical aspects. The interactions of alpha particle with matter were studied and the stopping powers of alpha particle with Bone Tissue were calculated by using Zeigler’s formula and SRIM software, also the Range for this particle were calculated by using Mat lab language for (0.01-1000) MeV alpha energy.

Publication Date
Tue Dec 01 2020
Journal Name
Minar International Journal Of Applied Sciences And Technology
Electron density spectroscopic measurement in Al laser induced plasma
...Show More Authors

Plasma generated by a 1064 nm pulsed Nd: YAG laser with pulse duration of 10 ns concentrated onto an Al solid target under vacuum pressure was examined spectroscopically. The temperature and electron density specifying the plasma were measured by time-resolved spectroscopy of neutral atom and ion line emissions in the time period range of 300–2000 ns. An echelle spectrograph is utilized to appear the plasma emission lines. The temperature was obtained using the spectral line comparison method and the electron density was calculated using the Stark Broadening (SB) method. The electron density was characterized as a function of laser pulse energy. The time range where the plasma is optically thin and is also in local thermodynamic equilibri

... Show More
Publication Date
Wed Apr 12 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Plasma Power Density Produced by D-T Fusion Reaction
...Show More Authors

         Calculation of the power density of the nuclear fusion reactions plays an important role in the   construction of any power plants. It is clear that the power released by fusion reaction strongly depended on the fusion cross section and fusion reactivity. Our calculation concentrates on the most useful and famous fuels (Deuterium-tritium) since it represents the principle fuels in any large scale system like the so called tokomak.

View Publication Preview PDF
Publication Date
Fri Jun 24 2022
Journal Name
Iraqi Journal Of Science
The Electron Temperature and The Electron Density measurement by Optical Emission Spectroscopy in Laser Produced Aluminum Plasma in Air
...Show More Authors

In this work the Aluminum plasma in Air produced by Nd: YAG pulsed laser, (λ = 1064 nm, τ = 6 ns) has been studied with a repletion rate of 10 Hz. The laser interaction in Al target (99.99%) under air atmosphere generates plasma, which is produced at room temperature; with variation in the energy laser from 600-900 mJ. The electron temperature and the electron density have been determined by optical emission spectroscopy and by assuming a local thermodynamic equilibrium (LTE) of the emitting species. Finally the electron temperature was calculated by the Boltzmann plot from the relative intensities of spectral lines and electron density was calculated by the Stark-broadening of emission line.

View Publication Preview PDF
Publication Date
Tue Jan 08 2019
Journal Name
Iraqi Journal Of Physics
Calculation of the total mass stopping power for electrons in some human body tissues in the energy range 0.01-1000 MeV
...Show More Authors

The mass collision energy loss (dE/dX), the mass radiative energy loss (Srad/) and the total mass stopping power of electrons in the energy range of 0.01 MeV up to 1000 MeV has been calculated for Lung, Urea and Skin. The results of the present work for the mass collision stopping power of electrons in Lung, Urea and Skin are in excellent agreement with the standard results given by ESTAR program, where the maximum percentage error between the present calculated values and that of ESTAR program in Lung tissue, Urea and Skin tissue is 0.27%, 0.3% and 0.8% respectively. The mass radiative energy loss of electrons in the same energy range is also calculated using a modified equation, and the results are found to be in very good agreem

... Show More
View Publication Preview PDF
Crossref (1)
Crossref