Preferred Language
Articles
/
bsj-5163
Stopping power and range calculations of protons in human tissues

In this research, the stopping power and range of protons in biological human soft and hard tissues (blood, brain, skeleton-cortical bone, and skin) of both child and adult are calculated at the energies ranging from 1MeV to 350 MeV. The data is collected from ICRU Report 46 and calculated the stopping power employing the Bethe formula. Moreover, the simple integration (continuous slowing down approximation) method is employed for calculating protons range at the target. Then, the stopping power and range of protons value in human tissues have been compared with the program called SRIM. Moreover, the results of the stopping power vs energy and the range vs energy have been presented graphically. Proper agreement is found between the gained and the SRIM results and varies almost linearly with energy up to 250 MeV.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jan 08 2019
Journal Name
Iraqi Journal Of Physics
Calculation of the total mass stopping power for electrons in some human body tissues in the energy range 0.01-1000 MeV

The mass collision energy loss (dE/dX), the mass radiative energy loss (Srad/) and the total mass stopping power of electrons in the energy range of 0.01 MeV up to 1000 MeV has been calculated for Lung, Urea and Skin. The results of the present work for the mass collision stopping power of electrons in Lung, Urea and Skin are in excellent agreement with the standard results given by ESTAR program, where the maximum percentage error between the present calculated values and that of ESTAR program in Lung tissue, Urea and Skin tissue is 0.27%, 0.3% and 0.8% respectively. The mass radiative energy loss of electrons in the same energy range is also calculated using a modified equation, and the results are found to be in very good agreem

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Mon Apr 01 2019
Journal Name
International Journal Of Research - Granthaalayah
CALCULATION OF THE STOPPING POWER OF ALPHA PARTICLES AND ITS RANGE IN BONE TISSU

With the advancement of modern radiotherapy technology, radiation dose and dose distribution have significantly improved. as part of Natural development, interest has recently been renewed by treatment, especially in the use of heavy charged particles, because these radiation types serve theoretical advantages in all biological and physical aspects. The interactions of alpha particle with matter were studied and the stopping powers of alpha particle with Bone Tissue were calculated by using Zeigler’s formula and SRIM software, also the Range for this particle were calculated by using Mat lab language for (0.01-1000) MeV alpha energy.

Publication Date
Wed Sep 12 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Calculation of Stopping Power and Range of Nitrogen Ions with the Skin Tissue in the Energies of (1-1000) MeV

       The use of heavy ions in the treatment of cancer tumors allows for accurate radiation of the tumor with minimal collateral damage that may affect the healthy tissue surrounding the infected tissue. For this purpose, the stopping power and the range to which these particles achieved of  Nitrogen (N) in the skin tissue  were calculated by programs SRIM (The Stopping and Range of Ions in Matter),(SRIM Dictionary) [1],(CaSP)(Convolution  approximation for Swift Particles )[2]which are famous programs to calculate stopping power of material and Bethe formula , in the energy range (1 - 1000) MeV .Then  the semi - empirical formulas to calculate the stopping power and range of Nitrogen io

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Oct 26 2021
Journal Name
Iraqi Journal Of Science
Theoretical Study for the Calculation of Proton Range in Human Body Tissues

     The main rationale for using charged particles in radiation therapy is the strong rise of energy loss (deposited dose) with maximum penetration depth ( Bragg peak) and rapid dose deposited  behind the peak. Thus, a large dose can be  applied to a deep seated tumor, with saving the surrounding normal tissues . Proton radiotherapy is nowadays an established method in the management of cancer diseases, although its availability is still limited to a few specialized centers. In this study, the range and the stopping power for proton interaction  in the skeleton  and intestine tissues, for an energy range from 0.01 to 300 MeV, was studied. The numerical calculations and analyses of Bethe&nbs

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Dec 11 2019
Journal Name
Aip Conference Proceedings
Mass stopping power of alpha particles in liquid water and some gases

The interaction of charged particles with the chemical elements involved in the synthesis of human tissues is one of the modern techniques in radiation therapy. One of these charged particles are alpha particles, where recent studies have confirmed their ability to generate radiation in a highly toxic localized manner because of its high ionization and short its range. In this work, We focused our study on the interaction of alpha particles with liquid water; since the water represents over 80% of the most-soft tissues, as well as, hydrogen, oxygen, and nitrogen ,because they are key chemical elements involved in the synthesis of most human tissues. The mass stopping powers of alpha particle with HଶO , COଶ, Oଶ, Hଶ and Nଶhave

... Show More
Publication Date
Tue Sep 11 2018
Journal Name
Iraqi Journal Of Physics
Inelastic mean free path of swift electrons and stopping power in Ta2O5

Energy Loss Function (ELF) of 2 5 Ta O derived from optical limit
and extended to the total part of momentum and their energy
excitation region ELF plays an important function in calculating
energy loss of electron in materials. The parameter Inelastic Mean
Free Path (IMFP) is most important in quantitative surface sensitive
electron spectroscopies, defined as the average distance that an
electron with a given energy travels between successive inelastic
collisions. The stopping cross section and single differential crosssection
SDCS are also calculated and gives good agreement with
previous work.

Crossref
View Publication Preview PDF
Publication Date
Sun Jul 02 2017
Journal Name
Journal Of The Faculty Of Medicine Baghdad
Assessment of CD56 and CD14 by IHC in Placental tissues from women with miscarriage

Background: Among many possible causes, CD14, CD 56, were implicated in immune mechanisms and might be involved in pregnancy loss. However the role of these Immunological factors has not been clearly elucidated. Some authors have shown that women with reproductive failure (such as spontaneous miscarriage) have increased CD14, uNK cells numbers; where as other authors reported no difference or even reduced numbers.
Objective: The aim of this study was to have an insight in a panel of the immunological factors shared in the placental microenvironment in an attempt to find a close relationships of these markers to the state of abortions.
Methods: Immunohistochemistry technique assay was used to detect CD14 and CD56 in 40 women with sp

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
Energy Procedia
Electron Contribution to Stopping Power in Burning Plasma

The dependence of the energy losses or the stopping power for the energies and the related penetrating factor are arrive by using a theoretical approximation models. in this work we reach a compatible agreement between our results and the corresponding experimental results.

Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sun Oct 02 2011
Journal Name
Journal Of The Faculty Of Medicine Baghdad
In Vitro Study of Mutagenicity and Genotoxicity of Some Bacterial Secretions associated with Bladder Tumors Tissues on Human Lymphocytes by Using Blood Tissue Culture Techniques

Background: Cytogenetic studies have been used to assess carcinogenic or mutagenic exposures and effects early in occupational, biological and environmental settings. Bacterial infection has not traditionally been considered asa major causes of cancer. Bacteria have been linked to cancer by two mechanisms: induction of chronic inflammation and production of carcinogenic bacterial metabolites.
Objective: Because of new concepts in relating infection with certain malignancies the present study is performed. Therefore this study was conducted to determine the effects of bacterial products associated with biopsies of bladder tumor on human lymphocytes tissue cultures in vitro. Moreover, if there is any relation between these products for

... Show More
Crossref
View Publication Preview PDF
Publication Date
Mon Oct 01 2018
Journal Name
Arpn Journal Of Engineering And Applied Sciences
Achieving a theoretical approximation characterize the stopping power of heavy ion in D-T plasma

The dependence of the energy losses or the stopping power for the ion contribution in D- T hot plasma fuels upon the corresponding energies and the related penetrating factorare arrive by using by a theoretical approximation models. In this work we reach a compatible agreement between our results and the corresponding experimental results.

Scopus
View Publication Preview PDF