Photonic Crystal Fiber Interferometers (PCFIs) are widely used for sensing applications. This work presents the fabrication and study the characterization of a relative humidity sensor based on a polymer-infiltrated photonic crystal fiber that operates in a Mach- Zehnder Interferometer (MZI) reflection mode. The fabrication of the sensor only involves splicing and cleaving Photonic Crystal Fiber (PCF) with Single Mode Fiber (SMF). A stub of (LMA-10) PCF spliced to SMF (Corning-28). In the splice regions. The PCFI sensor operation based on the adsorption and desorption of water vapour at the silica-air interface within the PCF. The sensor shows a high sensitivity to RH variations from (27% RH - 95% RH), with a change in its reflected power and the position of the interference peaks is found to be shifted that the interference pattern with a 100 nm span can be observed with high humidity sensitivity of (8.49 pm / %RH) is achieved with compact (4mm) PCF length . The sensor has the advantages for suitable for monitoring humidity in microenvironments. The repeatability, long-term stability, measurement accuracy. Wide humidity range. The response time of the sensor is found to be 1.4 sec for a change in RH of 50 %RH. The fast response time suggests that the sensor can potentially be used as a human breath rate monitor in a clinical situation.
Objective: To evaluate the changes in the surface quality of irreversible hydrocolloid impression material
hydrogum following disinfection with 0.525% sodium hypochlorite, 0.2% Chlorehexidine Gluconate, and 4%
Povidone Iodine.
Methodology: Forty specimens of alginate impression materials hydrogum were fabricated according to the
ISO 1563 and were divided into four groups according to the method of solution dipping: group 1: Dip in
0.525% sodium hypochlorite, group 2: Dip in 0.2% chlorhexidine gluconate, Group 3: Dip in 4% Povidone Iodine,
Group 4: No treatment with any solution (control group). Then the specimens were poured in type II stone.
Surface detail was determined using a stainless steel block in accordance w
Crude oil still affects many countries because it is one of the essential fuel sources. It makes life more manageable in modern communities and cannot be overstated because it is easy to use and find. However, the pollution caused by its use in industries such as mining, transportation, and the oil and gas business, especially soil pollution, cannot be ignored. Soil pollution is an issue in most communities because it influences people and ecology. Accidental infusions and spills of ore oils are prevalent occurrences leading to the entire or fractional exchange of the soil pore fluid by oil-contaminated soils that have affected the geotechnical engineering properties. The liquid limitations for polluted soil grades silty loam and sa
... Show MoreSlurry infiltrated fibrous concrete (SIFCON) is a modern type of fibre reinforced concrete (FRC). It has unique properties; SIFCON is superior in compressive strength, flexural strength, tensile strength, impact resistance, energy absorption and ductility. Because of this superiority in these characteristics, SIFCON was qualified for applications of special structures, which require resisting sudden dynamic loads such as explosions and earthquakes. The main aim of this investigation is to determine the effect of fibre type on the apparent density of SIFCON and on performance under impact load. In this investigation, hook-end steel fibre and polyolefin fibre were used. Purely once and
Thin films of GexS1-x were fabricated by thermal evaporating under vacuum of 10-5Toor on glass substrate. The effect of increasing of germanium content (x) in sulfide films on the electrical properties like d.c conductivity (σDC), concentration of charge carriers (nH) and the activation energy (Ea) and Hall effect were investigated. The measurements show that (Ea) increases with the increasing of germanium content from 0.1to0.2 while it get to reduces with further addition, while charge carrier density (nH) is found to decrease and increase respectively with germanium content. The results were explained in terms of creating and eliminating of states in the band gap
Thermal conductivity measurement was done for specimens of Polystyrene/ titanium dioxide, Polycarbonate/ titanium dioxide and Polymethylmetha acrylate/ titanium dioxide composites for weight ratio of 1.9/ 0.1 and 1.8/ 0.2 wt% for different thickness of the samples. The experimental results show that the thermal conductivity is increased with the increasing of thickness of layers and with the weight ratio of TiO2
Abstract The results of the effect of the type of feed showed a significant increase (P≤0.01) for palm fronds DM during the incubation period of 7, 14, 21 days, a high Mnp superiority in its incubation 14 days, and a significant superiority of Laccase in its incubation 21 days, while the effect of the enzyme concentration on DM was higher Significant at a concentration of 10% of the enzyme, and the interaction between the type of feed and the enzyme together showed a highly significant increase in the treated palm fronds Laccase and Lip in the incubation period of 7 days, and the treated palm fronds Mnp during incubation 14 days. %, 15% for the interaction between the type of coarse feed and the concentration of the enzyme
... Show MoreThis experiment was carried out in one of the fields (A) affiliated to the College of Agricultural Engineering Sciences / University of Baghdad, for the spring season 2021, On hybrid tomato plants (Mayai Mayai) to test flower viability, using two factors, the first was three levels of irrigation interval (2, 4, 6) days, and the second factor three concentrations of compound Nano fertilizer with concentrations (0, 1.5, 2.5) gm liter-1, so that the number of treatments is 9 treatments and three replications, the number of experimental units is 27 experimental units distributed randomly according to the random drawing method to ensure reducing experimental error and obtaining the most accurate results. A factorial experiment 3 x 3 x 3 was carr
... Show MoreIn this study, geopolymer mortar was designed in various experimental combinations employing 1% micro steel fibers and was subjected to different temperatures, according to the prior works of other researchers. The geopolymer mortar was developed using a variety of sustainable material proportions (fly ash and slag) to examine the influence of fibers on its strength. The fly ash weight percentage was 50%, 60%, and 70% by slag weight to study its effect on the geopolymer mortar's properties. The optimal ratio produced the most significant results when mixed at a 50:50 ratio of fly ash and slag with 1% micro steel fibers at curing temperature 240oC for 4 hours through two days. The compressive strength of the geopolymer mortar increas
... Show MoreBackground: Low-level laser therapy (LLLT) has been extensively applied to improve wound healing due to some biostimulatory properties presented by laser arrays apparently able to accelerate the repair of soft tissue injuries. However, the role of proinflammatory interlukines not been studied yet. IL_1 ? represent one of the most important poroinflammatory interlukines that involved in wound healing. The goal of this study was to investigate the effect of 790-805nm diode laser on the expression of IL_1 ? during wound healing in mice. Materials and Methods: Standard-sized wounds (1.5cm) were carried out in the face of 96 white albino mice. Half of them underwent LLLT treatment (360 J/cm 2) at 790-805 nm delivered immediately after wound pro
... Show More