Preferred Language
Articles
/
ijp-56
Enhancement the sensitivity of humidity sensor based on an agarose infiltration reflection-type photonic crystal fiber interferometer
...Show More Authors

Photonic Crystal Fiber Interferometers (PCFIs) are widely used for sensing applications. This work presents the fabrication and study the characterization of a relative humidity sensor based on a polymer-infiltrated photonic crystal fiber that operates in a Mach- Zehnder Interferometer (MZI) reflection mode. The fabrication of the sensor only involves splicing and cleaving Photonic Crystal Fiber (PCF) with Single Mode Fiber (SMF). A stub of (LMA-10) PCF spliced to SMF (Corning-28). In the splice regions. The PCFI sensor operation based on the adsorption and desorption of water vapour at the silica-air interface within the PCF. The sensor shows a high sensitivity to RH variations from (27% RH - 95% RH), with a change in its reflected power and the position of the interference peaks is found to be shifted that the interference pattern with a 100 nm span can be observed with high humidity sensitivity of (8.49 pm / %RH) is achieved with compact (4mm) PCF length . The sensor has the advantages for suitable for monitoring humidity in microenvironments. The repeatability, long-term stability, measurement accuracy. Wide humidity range. The response time of the sensor is found to be 1.4 sec for a change in RH of 50 %RH. The fast response time suggests that the sensor can potentially be used as a human breath rate monitor in a clinical situation.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Oct 01 2023
Journal Name
Optical Fiber Technology
A taper-in-etch based hybrid fiber Mach-Zehnder interferometer hydrogen sensor
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun May 26 2019
Journal Name
Iraqi Journal Of Science
Chloroform Vapor Sensor Based on Air-Gap of the Mach-Zehnder Interferometer
...Show More Authors

The proposal of this study is demonstrating a simple vapor sensor for chloroform (CHCI3) utilitizing air gap region of the Mach-Zehnder interferometer (MZI) by using a single mode optical fiber coupler (3 dB) structure. In the last few decades, flammable liquids such as chloroform have been highly used. This chemical liquid has some degrees of carcinogenic effects in humans in addition to acute and chronic exposure results like blurred vision and nausea.  The two arms of MZI contain a free space gap utilized to serve the sensing mechanism by adding chemical liquid volumes (0.2, 0.4, 0.6, 0.8, and 1) ml and to set the phase difference with air-gap distance 0.5 mm. The small variation in the effective refractive index of ch

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Tue Jan 08 2019
Journal Name
Iraqi Journal Of Physics
PANI/MWCNT based humidity sensor
...Show More Authors

Polyaniline Multi wall Carbon nanotube (PANI/MWCNTs) nanocomposite thin films have been prepared by Plasma jet polymerization at low frequency on glass substrate with preliminary deposited aluminum electrodes to form Al/PANI-MWCNT/Al surface-type capacitive humidity sensors, the gap between the electrodes about 50 μm and the MWCNTs weight concentration varied between 0, 1, 2, 3, 4%. The diameter of the MWCNTs was in the range of 8-15 nm and the length 10-55 μm. The capacitance-humidity relationships of the sensors were investigated at humidity levels from 35 to 90% RH. The electrical properties showed that the capacity increased with increasing relative humidity, and that the sensitivity of the sensor increases with the increase of the

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Feb 08 2019
Journal Name
Iraqi Journal Of Laser
Refractive Index Scaling in Hollow Core Photonic Crystal Fiber
...Show More Authors

In this paper, simulation study of the frequency shift of photonic bandgaps due to refractive index scaling using liquids filled hollow-core photonic crystal fibers is presented. Different liquids (distilled water, n-hexane, methanol, ethanol and acetone) are used to fill the cladding of 2 types of hollow core photonic crystal fibers (HC19-1060, HC7-1060). These liquids are used to change the effective index scaling and index contrast of the cladding. The effect of increasing temperature of the liquid (20-100 0C for water and 20-70 0C for other liquids ) infiltrated hollow core fiber on the bandgap width and transmission properties has been computed. The maximum photonic bandgap width at 0.0243 has appeared with filling HC7-1060 PCF with

... Show More
View Publication Preview PDF
Publication Date
Fri Dec 31 2021
Journal Name
Iraqi Journal Of Laser
The influence of no-core fibre length on the sensitivity Optical fibre Humidity sensor
...Show More Authors

Abstract: Reflection optical fibre Humidity sensor is presented in this work, which is based on no core fibre prepared by splicing a segment of no core fibre (NCF) at different lengths 1-6 cm with fixed diameter 125 µm and a single mode fibre (SMF). The range of humidity inside the chamber is controlled from 30% to 90% RH at temperature ~ 30 °С. The experimental result shows that the resonant wavelength dip shift decreases linearly with an increment of RH% and the sensitivity of the sensor increased linearly with an increasing in the length of NCF. However, a high sensitivity 716.07pm/RH% is obtained at length 5cm with good stability and reputability.  Furthermore, the sensor is shif

... Show More
View Publication Preview PDF
Publication Date
Sun Sep 07 2014
Journal Name
Baghdad Science Journal
Dispersion in a Gas Filled Hollow Core Photonic Crystal Fiber
...Show More Authors

Hollow core photonic bandgap fibers provide a new geometry for the realization and enhancement of many nonlinear optical effects. Such fibers offer novel guidance and dispersion properties that provide an advantage over conventional fibers for various applications. Dispersion, which expresses the variation with wavelength of the guided-mode group velocity, is one of the most important properties of optical fibers. Photonic crystal fibers (PCFs) offer much larger flexibility than conventional fibers with respect to tailoring of the dispersion curve. This is partly due to the large refractive-index contrast available in the silica/air microstructures, and partly due to the possibility of making complex refractive-index structure over the fibe

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Mar 07 2010
Journal Name
Baghdad Science Journal
Low Loss in a Gas Filled Hollow Core Photonic crystal fiber
...Show More Authors

The work in this paper focuses on the experimental confirming of the losses in photonic crystal fibers (PCF) on the transmission of Q-switched Nd:YAG laser. First HC-PCF was evacuated to 0.1 mbar then the microstructure fiber (PCF) was filled with He gas & gas. Second the input power and output power of Q-switched Nd:YAG laser was measured in hollow core photonic bandgap fiber (HCPCF). In this work loss was calculated in the hollow core photonic crystal fiber (HCPCF) filled with air then N2, and He gases respectively. It has bean observed that the minimum loss obtained in case of filling (HC-PCF) with He gas and its equal to 15.070 dB/km at operating wavelength (1040-1090) nm.

View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Fri Feb 08 2019
Journal Name
Iraqi Journal Of Laser
Fusion Splicing for a Large Mode Area Photonic Crystal Fiber with Conventional Single Mode Fiber
...Show More Authors

In this paper the experimentally obtained conditions for the fusion splicing with photonic crystal fibers (PCF) having large mode areas were reported. The physical mechanism of the splice loss and the microhole collapse property of photonic crystal fiber (PCF) were studied. By controlling the arc-power and the arc-time of a conventional electric arc fusion splicer (FSM-60S), the minimum loss of splicing for fusion two conventional single mode fibers (SMF-28) was (0.00dB), which has similar mode field diameter. For splicing PCF (LMA-10) with a conventional single mode fiber (SMF-28), the loss was increased due to the mode field mismatch.

View Publication Preview PDF
Publication Date
Tue Feb 12 2019
Journal Name
Iraqi Journal Of Laser
Enhanced Relative Humidity Sensor via Diameter of No-Core Fiber Structure
...Show More Authors

Single mode-no core-single mode fiber structure with a section of tuned no-core fiber diameter to sense changes in relative humidity has been experimentally demonstrated. The sensor performance with tuned NCF diameter was investigated to maximize the evanescent fields. Different tuned diameters of of (100, 80, and 60)μm were obtained by chemical etching process based on hydrofluoric acid immersion. The highest wavelength sensitivity was obtained 184.57 pm/RH% in the RH range of 30% –100% when the no-core fiber diameter diameter was 60 μm and the sensor response was in real-time measurements

View Publication Preview PDF
Publication Date
Wed Jul 29 2020
Journal Name
Iraqi Journal Of Science
Optical Fiber Biomedical Sensor Based on Surface Plasmon Resonance
...Show More Authors

Optical fiber biomedical sensor based on surface plasmon resonance for measuring and sensing the concentration and the refractive index of sugar in blood serum is designed and implemented during this work. Performance properties such as signal to noise ratio (SNR), sensitivity, resolution and the figure of merit were evaluated for the fabricated sensor. It was found that the sensitivity of the optical fiber-based SPR sensor with 40 nm thick and 10 mm long Au metal film of the exposed sensing region is 7.5µm/RIU, SNR is 0.697, figure of merit is 87.2 and resolution is 0.00026. The sort of optical fiber utilized in this work is plastic optical fiber with a core diameter of 980 µm, a cladding of 20μm, and a numerical aperture of 0.

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (9)
Scopus Crossref