The calculation. of the nuclear. charge. density. distributions. ρ(r) and root. mean. square. radius.( RMS ) by elastic. electron. scattering. of medium. mass. nuclei. such. as (90Zr, 92Mo) based. on the model. of the modified. shell. and the use of the probability. of occupation. on the surface. orbits. of level 2p, 2s eroding. shells. and 1g gaining. shells. The occupation probabilities of these states differ noticeably from the predictions of the SSM. We have found. an improvement. in the determination. of ground. charge. density. and this improvement. allow. more precise. identification. of (CDD) between. (92Mo- 90Zr) to illustrate the influence of the extra two protons on the charge. density. distributions and was agree. with those of experimental. data. and Hartree. – Fock. (H.F) wave. functions.
In this work, the annual behavior of critical frequency and electron density parameters of the ionosphere have been studied for the years (1989, 2001 and 2014) and (1986, 1996 and 2008) which represent the maximum and minimum of years in the solar cycles (22, 23 and 24) respectively. The annual behavior of (Ne, fo ) parameters have been investigated for different heights of Ionosphere layer (100 -1000) Km. The dataset was created both of critical frequency and electron density parameters by using the international reference ionosphere model (IRI-2016 model). This study showed result that during the maximum solar cycles the values of the (Ne) parameter change with
Transition strengths ↓
2
. u . w
2) M(E for gamma transition from first excited 21
+
states to the
ground states that produced by pure electric quadrupole emission in even –even isotopes of
56Ba and 62Sm have been studied through half- lives time for 21
+
excited states with the
intensities of γ0- transitions measurements and calculated as a function of neutron number
(N). The results thus obtained have shown that; the nuclides with magic neutron number such
as 56Ba
138
and 62Sm
144
have minimum value for ↓
2
. u . w
2) M(E .
This study is unique in this field. It represents a mix of three branches of technology: photometry, spectroscopy, and image processing. The work treats the image by treating each pixel in the image based on its color, where the color means a specific wavelength on the RGB line; therefore, any image will have many wavelengths from all its pixels. The results of the study are specific and identify the elements on the nucleus’s surface of a comet, not only the details but also their mapping on the nucleus. The work considered 12 elements in two comets (Temple 1 and 67P/Churyumoy-Gerasimenko). The elements have strong emission lines in the visible range, which were recognized by our MATLAB program in the treatment of the image. The percen
... Show MoreThe Plerion nebula is characterized by its pulsar that fills the center of the supernova remnant with radio and X-ray frequencies. In our galaxy there are nine naked plerionic systems known, of which the Crab Nebula is the best-known example. It has been studied this instance in order to investigate how the pulsar energy affect on the distribution and evolution of the remnant as well as study the pulsar kick velocity and its influence on the remnant. From the obtained results it's found that, the pulsar of the Crab Nebula injects about (2−3)𝑥 1047 erg of energy to the remnant, although this energy is small compared to the supernova explosion energy which is about 1051 erg but still plays a significant role in the distribution and the m
... Show MoreRadial density distribution function of one particle D(r1) was calculated for main orbital of carbon atom and carbon like ions (N+ and B- ) by using the Partitioning technique .The results presented for K and L shells for the Carbon atom and negative ion of Boron and positive ion for nitrogen ion . We observed that as atomic number increases the probability of existence of electrons near the nucleus increases and the maximum of the location r1 decreases. In this research the Hartree-fock wavefunctions have been computed using Mathcad computer software .
Statistical fluctuations of nuclear energy spectra for the isobar A = 68 were examined by means of the random matrix theory together with the nuclear shell model. The isobar A = 68 nuclei are suggested to consist of an inert core of 56Ni with 12 nucleons in f5p-space (2p3/2, 1f5/2 and 2p1/2 orbitals). The nuclear excitation energies, required by this work, were obtained through performing f5p-shell model calculations using the isospin formalism f5pvh interaction with realistic single particle energies. All calculations of the present study were conducted using the OXBASH code. The calculated level densities were found to have a Gaussian shape. The distributions of level spacing P(s) an
... Show More