Preferred Language
Articles
/
ijp-498
Optimization Procedures using Effect of Etalon Finesse and Driving Term on Optical Bistability

        In this work, analytical study for simulating a Fabry-Perot bistable etalon (F-P cavity) filled with a dispersive optimized nonlinear optical material (Kerr type) such as semiconductors Indium Antimonide (InSb). Because of a trade off between the etalon finesse values and driving terms, an optimization procedures have been done on the InSb etalon/CO laser parameters, using critical switching irradiance (Ic) via simulation systems of optimization procedures of optical cavity. in order to achieve the  minimum switching power and faster switching time, the optimization parameters of the finesse values and driving terms on optical bistability and switching dynamics must be studied.

        In addition, for different values of a cavity finesse (for example, F = 25 and 2.37) the switching intensity takes low values with a high finesse etalon compared to a high switching intensity with a low finesse etalon. So, the minimum switching power for a low finesse etalon is ⁓0.785mW, and is about 0.0785mW for a high finesse etalon. The driving term peak of a high finesse etalon becomes higher and the slowing down region becomes less, leading to a fast switching as compared with a slow switching in a low finesse etalon. So that, the minimum switching time was about 300ns for a low finesse etalon, and about 150ns for a high finesse etalon.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Dec 10 2018
Journal Name
Day 1 Mon, December 10, 2018
Wellbore Trajectory Optimization Using Rate of Penetration and Wellbore Stability Analysis

Drilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.

In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation

... Show More
View Publication
Publication Date
Mon Dec 10 2018
Journal Name
Day 1 Mon, December 10, 2018
Wellbore Trajectory Optimization Using Rate of Penetration and Wellbore Stability Analysis

Drilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.

In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation

... Show More
Crossref (12)
Crossref
View Publication
Publication Date
Sat Oct 01 2016
Journal Name
Journal Of Engineering
Optimization of Dye Removal Using Waste Natural Material and Polymer Particles

In this paper waste natural material (date seed) and polymer particles(UF) were used for investigation of  removal dye of the potassium permanganate. Also study effect some variables such as pH, dye concentration and adsorbent concentration on dye removal. 15 experimental runs were done using  the itemized conditions designed established on the Box-Wilson design employed to optimize dye removal. The optimum conditions for the dye removal were found: (pH) 12, (dye con.) 2.38 ppm, (adsorbant con.) 0.0816 gm for date seed with 95.22% removal and for UF (pH) 12, (dye con.) 18 ppm, (adsorbant con.) 0.2235 gm with 91.43%. The value of R-square was 85.47%  for Date seed  and (88.77%) for UF.

... Show More
View Publication Preview PDF
Publication Date
Tue Jun 09 2020
Journal Name
Article In Journal Of Engineering Science And Technology
Scopus (2)
Scopus
View Publication
Publication Date
Tue Nov 19 2024
Journal Name
Iraqi Journal Of Mechanical And Material Engineering
STUDY ON THE PARAMETER OPTIMIZATION INMAGNETIC ABRASIVE POLISHING FORBRASS CUZN33PLATE USING TAGUCHI METHOD

This paper describes a new finishing process using magnetic abrasives were newly made to finish effectively brass plate that is very difficult to be polished by the conventional machining processes. Taguchi experimental design method was adopted for evaluating the effect of the process parameters on the improvement of the surface roughness and hardness by the magnetic abrasive polishing. The process parameters are: the applied current to the inductor, the working gap between the workpiece and the inductor, the rotational speed and the volume of powder. The analysis of variance(ANOVA) was analyzed using statistical software to identify the optimal conditions for better surface roughness and hardness. Regressions models based on statistical m

... Show More
View Publication
Publication Date
Sat Sep 30 2017
Journal Name
Al-khwarizmi Engineering Journal
Robot Arm Path Planning Using Modified Particle Swarm Optimization based on D* algorithm

Abstract

Much attention has been paid for the use of robot arm in various applications. Therefore, the optimal path finding has a significant role to upgrade and guide the arm movement. The essential function of path planning is to create a path that satisfies the aims of motion including, averting obstacles collision, reducing time interval, decreasing the path traveling cost and satisfying the kinematics constraints. In this paper, the free Cartesian space map of 2-DOF arm is constructed to attain the joints variable at each point without collision. The D*algorithm and Euclidean distance are applied to obtain the exact and estimated distances to the goal respectively. The modified Particle Swarm Optimization al

... Show More
Crossref (8)
Crossref
View Publication Preview PDF
Publication Date
Thu Apr 27 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Radiation Effect on the Optical& Structural Properties of CdTe: Zn thin Films

The Films of CdTe:Zn were prepared on a glass by using vacuum vapor deposition technique .The x-ray diffraction pattern revealed that the films have polycrystalline with FCC structure and the preferred orientation was along (111) plane.  The films were exposed to a low dose of gamma ray.(5µCi for 30 days) Transmission and absorptance spectra were recorded in the range of (400-1100) nm before and after irradiation. It was found that irradiation has a clear effect on the optical and structural properties which include the transmition and absorption spectra, extinction coefficient, refractive index, and the energy gap.

View Publication Preview PDF
Publication Date
Sun May 30 2021
Journal Name
Iraqi Journal Of Science
Copper Molarity Effect on the Optical Properties of Cu2CdSnS4 Quaternary Thin Films

 The quaternary alloy of Cu2CdSnS4 (CCSS) is one type of thin film materials that contributes to the field of photovoltaic devices manufacturing, the importance of which has not been commonly enlightened as most of the other materials. For the preparation of CCSS thin films at 350 °C on glass substrates, the chemical spray pyrolysis technique was used. The optical properties of thin films prepared under the influence of the variation of copper solution molarity (0.03, 0.05, 0.07, and 0.09 M) on the quaternary compound were examined using a UV-vis spectrophotometer. The findings of the AFM study showed the atoms on the surface that are acclimatized in the form of nanorods with an increase in the average grain s

... Show More
Scopus (8)
Crossref (5)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Jul 01 2021
Journal Name
Journal Of Physics: Conference Series
Wireless Optimization Algorithm for Multi-floor AP deployment using binary particle swarm optimization (BPSO)
Abstract<p>Optimizing the Access Point (AP) deployment is of great importance in wireless applications owing the requirement to provide efficient and cost-effective communication. Highly targeted by many researchers and academic industries, Quality of Service (QOS) is an important primary parameter and objective in mind along with AP placement and overall publishing cost. This study proposes and investigates a multi-level optimization algorithm based on Binary Particle Swarm Optimization (BPSO). It aims to an optimal multi-floor AP placement with effective coverage that makes it more capable of supporting QOS and cost effectiveness. Five pairs (coverage, AP placement) of weights, signal threshol</p> ... Show More
Scopus Crossref
View Publication
Publication Date
Fri Jan 01 2016
Journal Name
World Scientific News