Magnetosphere is a region of space surrounding Earth magnetic field, the formation of magnetosphere depends on many parameters such as; surface magnetic field of the planet, an ionized plasma stream (solar wind) and the ionization of the planetary upper atmosphere (ionosphere). The main objective of this research is to find the behavior of Earth's magnetosphere radius (Rmp) with respect to the effect of solar wind kinetic energy density (Usw), Earth surface magnetic field (Bo), and the electron density (Ne) of Earth's ionosphere for three years 2016, 2017 and 2018. Also the study provides the effect of solar activity for the same period during strong geomagnetic storms on the behavior of Rmp. From results we found that there are nonlinear relations between the (Rmp) and the three variables (Usw), (Bo) and (Ne). Also we found that during the strong geomagnetic storms there is a reduction in the radius of magnetosphere.
This paper presents a comparison between the electroencephalogram (EEG) channels during scoliosis correction surgeries. Surgeons use many hand tools and electronic devices that directly affect the EEG channels. These noises do not affect the EEG channels uniformly. This research provides a complete system to find the least affected channel by the noise. The presented system consists of five stages: filtering, wavelet decomposing (Level 4), processing the signal bands using four different criteria (mean, energy, entropy and standard deviation), finding the useful channel according to the criteria’s value and, finally, generating a combinational signal from Channels 1 and 2. Experimentally, two channels of EEG data were recorded fro
... Show MoreThe current study performs an explicit nonlinear finite element simulation to predict temperature distribution and consequent stresses during the friction stir welding (FSW) of AA 7075-T651 alloy. The ABAQUS® finite element software was used to model and analyze the process steps that involve plunging, dwelling, and traverse stages. Techniques such as Arbitrary Lagrangian–Eulerian (ALE) formulation, adaptive meshing, and computational feature of mass scaling were utilized to simulate sequence events during the friction stir welding process. The contact between the welding tool and workpiece was modelled through applying Coulomb’s friction model with a nonlinear friction coefficient value. Also, the model considered the effect of nonlin
... Show MoreThe ratio of draft tube to reactor diameters is of decisive importance for the operation behavior of air lift loop reactors. The influence of draft tube geometry was investigated with respect to oxygen mass transfer and mixing time. The diameter ratio was varied between 0.33 and 0.80. The measurements were performed in two loop reactors with liquid capacities of 11.775 and 26.49 liters using aqueous with solutions of different coalescence behavior. The results show that there is no single diameter ratio which would produce most favorable conditions for the two process parameters. With respect to the more important requirements of aerobic cultures, i.e high oxygen mass transfer and efficient mixing, a diameter ratio between 0.5 and 0.6 is
... Show MoreThe experiment was conducted to investigate the predation behavior of crustacean
zooplankton M. albidus for first instar mosquito larvae of Culex quinquefasciatus, which may
be represented as an indicator of the species activity for biological control of mosquito larvae.
Results revealed that females spend 6.30 min. as average to find the mosquito larval and
to catch it, whereas it consumed 7.20 min. in digestion of the prey. On the other hand the
corresponding means for male were 10.29 and 4.00 min. respectively. Differences between
females and males were not significant for the time consumed to catch the prey whereas the
differences were significant (P < 0.05) in regard to the time consumed to digest the p
The effect of considering the third dimension in mass concrete members on its cracking behavior is investigated in this study. The investigation includes thermal and structural analyses of mass concrete structures. From thermal analysis, the actual temperature distribution throughout the mass concrete body was obtained due to the generation of heat as a result of cement hydration in
addition to the ambient circumstances. This was performed via solving the differential equations of heat conduction and convection using the finite element method. The finite element method was also implemented in the structural analysis adopting the concept of initial strain problem. Drying shrinkage volume changes were calculated using the procedure sug
PVA and chitosan biodegradable, non-toxic, biocompatible polymers convenient for use in drug release.
In this study polyvinyl alcohol (PVA) and chitosan (CS) hydrogels crosslinked with glutaraldehyde (GA) with different ratio morphology and structure characterization interpenetrating polymer network (IPN).They were investigated by Fourier transmission infrared spectroscopy (FTIR), scanning electron microscope (SEM), UV-Visible spectrophotometer,swelling of hydrogel and drug release were studied by changing crosslinking ratio and PH.
The effect of considering the third dimension in mass concrete members on its cracking behavior is investigated in this study. The investigation includes thermal and structural analyses of mass concrete structures. From thermal analysis, the actual temperature distribution throughout the mass concrete body was obtained due to the generation of heat as a result of cement hydration in addition to the ambient circumstances. This was performed via solving the differential equations of heat conduction and convection using the finite element method. The finite element method was also implemented in the structural analysis adopting the concept of initial strain problem. Drying shrinkage volume changes were calculated using the procedure suggested
... Show MoreIn this paper, three types of epoxy-based coatings (Polyamide, pure Polyamine, and Polyamine reinforced by glass-flake) used as a lining for potable water tanks were studied using experimental and finite element methods. Tensile, impact, and fatigue tests were conducted on uncoated and coated AISI 316 stainless steel. The test results show that the applied epoxy based coating improves the mechanical properties, increases of fatigue crack resistance, and enhance the dynamic fracture toughness. The fatigue crack propagation is influenced by the compositions of epoxy coating, and the glass-flake improves the coating resistance to fatigue crack propagation compared to other types.