Preferred Language
Articles
/
LRburocBVTCNdQwCO1vN
Development of a Multi-Completion Gas and Downhole Water Sink-Assisted Gravity Drainage (MC-DWS-AGD) to Improve Oil Recovery and Reduce Water Cut in Reservoirs with Strong Water Aquifers
Abstract<p>Gas and downhole water sink assisted gravity drainage (GDWS-AGD) is a promising gas-based enhanced oil recovery (EOR) process applicable for reservoirs associated with infinite aquifers. However, it can be costly to implement because it typically involves the drilling of multiple vertical gas-injection wells. The drilling and well-completion costs can be substantially reduced by using additional completions for gas injection in the oil production wells through the annulus positioned at the top of the reservoir. Multi-completion-GDWS-AGD (MC-GDWS-AGD) can be configured to include separate completions for gas injection, oil, and water production in individual wells. This study simulates the MC-GDWS-AGD process applied to the synthetic reservoir (PUNQ-S3, based on a real North Sea Field) by placing multiple completions in two wells, which include a gas injection loop, and 2-horizontal wells with a diameter of 2⅜ inch, first one for producing oil located above the oil/water contact and the second one for water sink placed below the oil/water contact. Hydraulic packers are positioned to isolate the multiple completions and an electric submersible pump are positioned to produce the water zone. These results compare to a base case involving no MC-GDWS-AGD wells, which achieved 55.5% oil recovery and 70% water cut.</p>
Crossref
View Publication
Publication Date
Fri Jan 01 2021
Journal Name
Macromolecular Characterization Of Hydrocarbons For Sustainable Future
Crossref (2)
Crossref
Publication Date
Mon Apr 22 2019
Journal Name
Spe
Evaluation of Gas and Downhole Water Sink-Assisted Gravity Drainage GDWS-AGD Process in Saturated Oil Reservoirs with Infinite-Acting Aquifer
Abstract<p>A hybrid Gas-Enhanced and Downhole Water Sink-Assisted Gravity Drainage (GDWS-AGD) process has been suggested to enhance oil recovery by placing vertical injectors for CO2 at the top of the reservoir with a series of horizontal oil-producing and water-drainage wells located above and below the oil-water contact, respectively. The injected gas builds a gas cap that drives the oil to the (upper) oil-producing wells while the bottom water-drainage wells control water cresting. The hybrid process of GDWS-AGD process has been first developed and tested in vertical wells to minimize water cut in reservoirs with bottom water drive and strong water coning tendencies. The wells were dual-compl</p> ... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Thu Sep 01 2022
Journal Name
Fuel
Crossref (16)
Crossref
Publication Date
Fri Feb 10 2023
Journal Name
Energies
Well Placement Optimization through the Triple-Completion Gas and Downhole Water Sink-Assisted Gravity Drainage (TC-GDWS-AGD) EOR Process

Gas and downhole water sink-assisted gravity drainage (GDWS-AGD) is a new process of enhanced oil recovery (EOR) in oil reservoirs underlain by large bottom aquifers. The process is capital intensive as it requires the construction of dual-completed wells for oil production and water drainage and additional multiple vertical gas-injection wells. The costs could be substantially reduced by eliminating the gas-injection wells and using triple-completed multi-functional wells. These wells are dubbed triple-completion-GDWS-AGD (TC-GDWS-AGD). In this work, we design and optimize the TC-GDWS-AGD oil recovery process in a fictitious oil reservoir (Punq-S3) that emulates a real North Sea oil field. The design aims at maximum oil recovery us

... Show More
Crossref (7)
Crossref
View Publication Preview PDF
Publication Date
Thu Aug 01 2024
Journal Name
Fuel
Experimental influence assessments of water drive and gas breakthrough through the CO2-assisted gravity drainage process in reservoirs with strong aquifers

Mature oil reservoirs surrounded with strong edge and bottom water drive aquifers experience pressure depletion and water coning/cresting. This laboratory research investigated the effects of bottom water drive and gas breakthrough on immiscible CO2-Assisted Gravity Drainage (CO2-AGD), focusing on substantial bottom water drive. The CO2-AGD method vertically separates the injected CO2 to formulate a gas cap and Oil. Visual experimental evaluation of CO2-AGD process performance was performed using a Hele-Shaw model. Water-wet sand was used for the experiments. The gas used for injection was pure CO2, and the “oleic” phase was n-decane with a negative spreading coefficient. The aqueous phase was deionized water. To evaluate the feasibilit

... Show More
Scopus (1)
Crossref (2)
Scopus Clarivate Crossref
View Publication
Publication Date
Tue Jun 30 2020
Journal Name
Association Of Arab Universities Journal Of Engineering Sciences
Immiscible CO2-Assisted Gravity Drainage Process for Enhancing Oil Recovery in Bottom Water Drive reservoir

The CO2-Assisted Gravity Drainage process (GAGD) has been introduced to become one of the mostinfluential process to enhance oil recovery (EOR) methods in both secondary and tertiary recovery through immiscibleand miscible mode. Its advantages came from the ability of this process to provide gravity-stable oil displacement forenhancing oil recovery. Vertical injectors for CO2 gas have been placed at the crest of the pay zone to form a gas capwhich drain the oil towards the horizontal producing oil wells located above the oil-water-contact. The advantage ofhorizontal well is to provide big drainage area and small pressure drawdown due to the long penetration. Manysimulation and physical models of CO2-AGD process have been implemented

... Show More
Publication Date
Wed Jul 22 2020
Journal Name
University Of Baghdad
Publication Date
Fri Aug 28 2020
Journal Name
Iraqi Journal Of Science
Numerical Simulation of Immiscible CO2-Assisted Gravity Drainage Process to Enhance Oil Recovery

The Gas Assisted Gravity Drainage (GAGD) process has become one of the most important processes to enhance oil recovery in both secondary and tertiary recovery stages and through immiscible and miscible modes.  Its advantages came from the ability to provide gravity-stable oil displacement for improving oil recovery, when compared with conventional gas injection methods such as Continuous Gas Injection (CGI) and Water – Alternative Gas (WAG). Vertical injectors for CO2   gas were placed at the top of the reservoir to form a gas cap which drives the oil towards the horizontal oil producing wells which are located above the oil-water-contact. The GAGD process was developed and tested in vertical wells to increase oil r

... Show More
Crossref (4)
Crossref
Publication Date
Fri Aug 28 2020
Journal Name
Iraqi Journal Of Science
Numerical Simulation of Immiscible CO2-Assisted Gravity Drainage Process to Enhance Oil Recovery

The Gas Assisted Gravity Drainage (GAGD) process has become one of the most important processes to enhance oil recovery in both secondary and tertiary recovery stages and through immiscible and miscible modes.  Its advantages came from the ability to provide gravity-stable oil displacement for improving oil recovery, when compared with conventional gas injection methods such as Continuous Gas Injection (CGI) and Water – Alternative Gas (WAG).

Vertical injectors for CO2   gas were placed at the top of the reservoir to form a gas cap which drives the oil towards the horizontal oil producing wells which are located above the oil-water-contact. The GAGD process was developed and tested in vertical wel

... Show More
Scopus (6)
Crossref (4)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Jun 30 2024
Journal Name
Iraqi Geological Journal
Optimizing Water-Cut and Boosting Oil Recovery: Geological Insights from Mishrif Reservoir, Buzurgan Oil Field

This study utilizes streamline simulation to model fluid flow in the complex subsurface environment of the Mishrif reservoir in Iraq's Buzurgan oil field. The reservoir faces challenges from high-pressure depletion and a substantial increase in water cut during production, prompting the need for innovative reservoir management. The primary focus is on optimizing water injection procedures to reduce water cuts and enhance overall reservoir performance. Three waterflooding tactics were examined: normal conditions without injectors or producers, normal conditions with 30 injectors and 80 producers and streamline simulation using the frontsim simulator. Three main strategies were employed to streamline water injection in targeted areas.

... Show More
Scopus Crossref
View Publication