Magnetosphere is a region of space surrounding Earth magnetic field, the formation of magnetosphere depends on many parameters such as; surface magnetic field of the planet, an ionized plasma stream (solar wind) and the ionization of the planetary upper atmosphere (ionosphere). The main objective of this research is to find the behavior of Earth's magnetosphere radius (Rmp) with respect to the effect of solar wind kinetic energy density (Usw), Earth surface magnetic field (Bo), and the electron density (Ne) of Earth's ionosphere for three years 2016, 2017 and 2018. Also the study provides the effect of solar activity for the same period during strong geomagnetic storms on the behavior of Rmp. From results we found that there are nonlinear relations between the (Rmp) and the three variables (Usw), (Bo) and (Ne). Also we found that during the strong geomagnetic storms there is a reduction in the radius of magnetosphere.
This study aims to determine the reasons for the increase in the frequency of sand and dust storms in the Middle East and to identify their sources and mitigate them. A set of climatic data from 60 years (1960–2022) was analyzed. Sand storms in Iraq are a silty sand mature arkose composed of 72.7% sand, 25.1% silt, and 2.19% clay; the clay fraction in dust storms constitutes 70%, with a small amount of silt (20.6%) and sand (9.4%). Dust and sand storms (%) are composed of quartz (49.2, 67.1), feldspar (4.9, 20.9), calcite (38, 5), gypsum (4.8, 0.4), dolomite (0.8, 1.0), and heavy minerals (3.2, 6.6). Increasing temperatures in Iraq, by an average of 2 °C for sixty years, have contributed to an increase in the number of dust storm
... Show MoreThis work aims to provide a statistical analysis of metal removal during the Magnetic Abrasive Finishing process (MAF) and find out the mathematical model which describes the relationship between the process parameters and metal removal, also estimate the impact of the parameters on metal removal. In this study, the single point incremental forming was used to form the truncated cone made of low carbon steel (1008-AISI) based on the Z-level tool path. Then the finishing was accomplished using a magnetic abrasive process based on the Box-Behnken design of the experiment using Minitab 17 software was used to finish the surface of the formed truncated cone. The influences of different parameters (feed rate, machining step s
... Show MoreIraq suffers from serious pollution with harmful particles that have important direct and indirect effects on human activities and human health. In this research, a system for detecting pollutants in the air was designed and manufactured using infrared laser technology. This system was used to detect the presence of pollutants in the dust storms that swept the city of Baghdad which could have a negative impact on human health and living organisms.
The designed detection system based on the use of infrared laser (IR) with a wavelength of 1064 nm was used for the purposes of detecting pollutants based on the scattering of the laser beam from these pollutants. The system was aligned to obtain the best signal for the scattered rays, w
... Show MoreOptimum perforation location selection is an important study to improve well production and hence in the reservoir development process, especially for unconventional high-pressure formations such as the formations under study. Reservoir geomechanics is one of the key factors to find optimal perforation location. This study aims to detect optimum perforation location by investigating the changes in geomechanical properties and wellbore stress for high-pressure formations and studying the difference in different stress type behaviors between normal and abnormal formations. The calculations are achieved by building one-dimensional mechanical earth model using the data of four deep abnormal wells located in Southern Iraqi oil fields. The magni
... Show MoreIn this paper, the satellite in low Earth orbit (LEO) with atmospheric drag perturbation have been studied, where Newton Raphson method to solve Kepler equation for elliptical orbit (i=63 , e = 0.1and 0.5, Ω =30 , ω =100 ) using a new modified model. Equation of motion solved using 4th order Rang Kutta method to determine the position and velocity component which were used to calculate new orbital elements after time step ) for heights (100, 200, 500 km) with (A/m) =0.00566 m2/kg. The results showed that all orbital elements are varies with time, where (a, e, ω, Ω) are increased while (i and M) are decreased its values during 100 rotations.The satellite will fall to earth faster at the lower height and width using big values for ecce
... Show MoreToxoplasmosis is an infection caused by Toxoplasma gondii that leads to abortion or hydrocephalus during pregnancy.One hundered and twenty two aborted women were selected for this study. Serum samples were collected form Al-Kadhmia and Kamal Al-Samari Hospitals,and laboratories around Baghdad, and tested for specific IgG and IgM anti-toxoplasma antibodies to confirm toxoplasmosis in those women by using ELISA test.The result recorded that 51(41.8%) women had antibodies against Toxoplasma gondii, 25(59.5%) women were positive for IgG, and 17(40.5%) women were positive forIgM, while 9(17.6%)women were positive for both.
Background: Laparoscopic cholecystectomy (LC) has become the standard treatment for symptomatic cholelithiasis. Bile duct injury and accidental gallbladder perforation with spillage of bile and stone are common complications of LC. This study was carried out to assess the early complications of gallbladder perforation during LC, and identify the risk factor of that perforation.
Objectives: to evaluate the early complications which may occur after the perforation of the gallbladder during laparoscopic cholecystectomy and to determine the risk factors which are associated with the perforation of the gall bladder.
Subjects and methods: A prospective comparative study o
... Show MoreIn the geotechnical and terramechanical engineering applications, precise understandings are yet to be established on the off-road structures interacting with complex soil profiles. Several theoretical and experimental approaches have been used to measure the ultimate bearing capacity of the layered soil, but with a significant level of differences depending on the failure mechanisms assumed. Furthermore, local displacement fields in layered soils are not yet studied well. Here, the bearing capacity of a dense sand layer overlying loose sand beneath a rigid beam is studied under the plain-strain condition. The study employs using digital particle image velocimetry (DPIV) and finite element method (FEM) simulations. In the FEM, an experiment
... Show More