In this work gold nanoparticles (AuNPs), were prepared. Chemical method (Seed-Growth) was used to prepare it, then doping AuNPs with porous silicon (PS), used silicon wafer p-type to produce (PS) the processes doping achieved by electrochemical etching, the solution etching consist of HF, ethanol and AuNPs suspension, the result UV-visible absorption for AuNPs suspension showed the single peak located at ~(530 – 521) nm that related to SPR, the single peak is confirmed that the NPs present in the suspension is spherical shape and non-aggregated. X-ray diffraction analysis indicated growth AuNPs with PS. compare the PS layer without AuNPs and with AuNPs doped for electrical properties and sensitivity properties we found AuNPs:PS is more better than PS layer alone that refer to the AuNPs is improve properties PS.
Samples of Bi1.6Pb0.4Sr2Ca2Cu3O10+δ superconductor were prepared by solid-state reaction method to study the effects of gold nanoparticles addition to the superconducting system, Nano-Au was introduced by small weight percentages (0.25, 0.50, 0.75, 1.0, and 1.25 weight %). Phase identification and microstructural
characterization of the samples were investigated using XRD and SEM. Moreover, DC electrical resistivity as a function of the temperature, critical current density Jc, AC magnetic susceptibility, and DC magnetization measurements were carried to evaluate the relative performance of samples. x-ray diffraction analysis showed that both (Bi,Pb)-2223 and Bi-2212 phases coexist in the samples having an orthorhombic crystal struct
In this paper, the productions of gallium oxide (Ga2O3) nanoparticles were achieved via using the Nd: YAG laser deposition method with a fundamental wavelength (1064 nm). These nanoparticles were characterized by using different methods such as X-ray diffractometer (XRD), atomic force microscopy (AFM) and Ultraviolet–visible (UV–vis) spectroscopy. To examine the effects of laser energy on the properties of nanoparticles, the experimental results and theoretical considerations were prepared by the effective method of pulse laser deposition. The synthesis of Ga2O3NPs) was achieved with different ranges of energies (500 to 900 mJ). Average crystallite sizes of the synthesized nanopar
... Show MoreNanoparticle has pulled in expanding consideration with the developing enthusiasm for nanotechnology which hold potential as essential segments for development applications. In the present work, a copper nanoparticle is manufactured as a suspension in distilled water by beating a bulk copper target with laser source (532 nm wavelength, 10 ns pulse duration and 10 Hz repletion rate) via method. UV- visible absorption spectra and AFM analysis has been done to observe the effect of repetition rate for the pulsation of laser. Copper nanoparticles (Cu-NPs) were successfully synthesized with green color. The Cu- NPs have very high purity because the preparation was managed in aqueous media to eliminate ambient contaminations. Absorption
... Show MoreIn this work magnetite/geopolymer composite (MGP) were synthesized using a chemical co-precipitation technique. The synthesized materials were characterized using several techniques such as: “X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), vibrating sample-magnetometer (VSM), field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), Brunauer–Emmett–Teller (BET) and Barrentt-Joyner-Halenda (BJH)” to determine the structure and morphology of the obtained material. The analysis indicated that metal oxide predominantly appeared at the shape of the spinel structure of magnetite, and that the presence of nano-magnetite had a substantial impact on the surface area and pore st
... Show MoreWaveform flow of non-Newtonian fluid through a porous medium of the non-symmetric sloping canal under the effect of rotation and magnetic force, which has applied by the inclined way, have studied analytically and computed numerically. Slip boundary conditions on velocity distribution and stream function are used. We have taken the influence of heat and mass transfer in the consideration in our study. We carried out the mathematical model by using the presumption of low Reynolds number and small wave number. The resulting equations of motion, which are representing by the velocity profile and stream function distribution, solved by using the method of a domain decomposition analysis a
Nanomaterials became targeted materials for many important applications due to its huge surface area and quantum confinement effects. In this work TiO2 nanoparticles (30nm) were used as additive to enhance the corrosion protection of steel rebar in artificial concrete solution (Ca(OH)2 (2g), KOH (22.44mg), NaOH (8mg) in 1L of distilled water) against saline environment (3.5%NaCl) at four temperatures; 20, 30, 40, and 50á´¼C. Three different concentrations of TiO2 NPs were used namely; 1, 3, and 5% by weight. The corrosion parameters and pitting probability were followed using Tafel and cyclic polarization plots respectively. Protection enhancement was recorded at all TiO2<
... Show MoreLeishmaniasis is an endemic disease in Iraq, where both forms of the disease, cutaneous and visceral, are found. The effect of Zinc oxide nanoparticles (ZnO NPs) with mean particle size less than 100 nanometer (nm) on viability and growth rate of Leishmania donovani promastigotes was evaluated. The anti-leishmanial activity of different concentrations (0.1, 0.2, 0.4, 0.6, 0.8, and 1 μg/ml) of ZnO NPs was investigated on promastigotes growth rates and viability in comparison to promastigotes exposed to the same concentrations of sodium stibogluconate (Sb) (pentostam).The inhibitory concentrations (IC50s) of ZnO NPs were calculated after 24 , 48 and 72 hr which were (0.871, 0.156 and 0.120 μg/ml) respectively with significant (p< 0.05
... Show MoreIn this study, In2O3 was prepared by Solvothermal technique in autoclave device, which is a simple and inexpensive technique to indicate the best condition. The reaction took place between indium chloride and urea. In(OH)3 as-prepared annealing at 100°C and convert to In2O3 at annealing temperatures 300, 500, 700 °C for 90 min .The physical properties of nanoparticles were characterized by XRD, SEM, AFM, UV/Visible and FTIR spectroscopy measurements. The examination results of XRD for In2O3 powder annealed at different temperature showed the formation of a cubic phase of nanoparticles with high intensity of plane (222). The lattice constant decreases with the increase of annealing temperature (from 10.07 to 10.04 Ǻ). AFM indicated an
... Show More