In this work, pure and doped Vanadium Pentoxide (V2O5) thin films with different concentration of TiO2 (0, 0.1, 0.3, 0.5) wt were obtained using Pulse laser deposition technique on amorphous glass substrate with thickness of (250)nm. The morphological, UV-Visible and Fourier Transform Infrared Spectroscopy (FT-IR) were studied. TiO2 doping into V2O5 matrix revealed an interesting morphological change from an array of high density pure V2O5 nanorods (~140 nm) to granular structure in TiO2-doped V2O5 thin film .Transform Infrared Spectroscopy (FTIR) are used to analyze structural properties of as-deposit. The transmittance and absorption of each film, in the spectral range 300 to 1100 nm, were measured from which the optical constants (Refractive index, Absorption coefficient, Extinction coefficient and Energy gap) were determined .The energy band gap of the films was found to be change from (2.38 to 2.9) eV when the concentration of TiO2 increases from (2.78 to 2.9 ) eV The results showed a significant improvement in the transmittance and refractive index in TiO2 doped V2O5 thin films .All measured values were in consistent with other previous studies.
In this paper, the effect of wear in the fluid film journal bearings on the dynamic stability of rotor bearing system has been studied depending on the development of new analytical equations for motion, instability threshold speed and steady state harmonic response for rotor with offset disc supported by worn journal bearings. Finite element method had been used for modeling the rotor bearing system. The analytical model is verified by comparing its results with that obtained numerically for a rotor supported on the short bearings. The analytical and numerical results showed good agreement with about 8.5% percentage error in the value of critical speed and about 3.5% percentage error in the value of harmonic response. T
... Show MoreThe optical detectors which had been used in medical applications, and especially in radioactive treatments, need to be modified studied for the effects of radiations on them. This study included preparation of the MnS thin films in a way that vacuum thermal evaporation process at room temperature 27°C with thickness (400+-10nm) nm and a sedimentation rate of 0.39nm/sec on glass floors. The thin films prepared as a detector and had to be treated with neutron irradiation to examine the results gained from this process. The results decay X-ray (XRD) showed that all the prepared thin films have a multi-crystalline structure with the dominance of the direction (111), the two samples were irradiated with a neutron irradiation source (241Am-9Be)
... Show MoreStudy was made on the optical properties of Ge2oSe8othinfilms prepared by vac-uum evaporation as radiated by (0,34,69) Gy of 13 ray.The optical band gab Eg and tailing band A.Et were studied in the photon energy range ( 1 to 3)eV. The a-Ge20Se8o film was found to be indirect gap with energy gap of (1.965,1.9 , 1.82) eV at radiated by B ray with absorption doses of (0,34,69)Gy respectively.The Ea and AEt of Ge20Se80 films showed adecrease in E8 and an increase in AEt with radiation. This be-havior may be related to structural defects and dangling bonds.
Pure grade II titanium disks were coated with a thin coating of polyetherketoneketone (PEKK) polymer by RF magnetron sputtering using either nitrogen or argon gas. Sputtering technique was employed at 50 W for one hour at 60°C with continuous flow of nitrogen or argon gas. Field-emission scanning electron microscopy (FE-SEM) showed a continuous, homogeneous, rough PEKK surface coating without cracks. In addition, cross-sectional FE-SEM revealed an average coat thickness of 1.86 μm with argon gas and 1.96 μm with nitrogen gas. There was homogenous adhesion between the coating layer and substrate. The elemental analysis of titanium substrate revealed the presence of carbon, titanium, and oxygen. The RF magnetron sputtering with argon or ni
... Show MoreThe electrical properties of polycrystalline cadmium telluride thin films of different thickness (200,300,400)nm deposited by thermal evaporation onto glass substrates at room temperature and treated at different annealing temperature (373, 423, 473) K are reported. Conductivity measurements have been showed that the conductivity increases from 5.69X10-5 to 0.0011, 0.0001 (?.cm)-1 when the film thickness and annealing temperature increase respectively. This increasing in ?d.c due to increasing the carrier concentration which result from the excess free Te in these films.
The effect of different doping ratio (0.3, 0.5, and 0.7) with thickness in the range 300nmand annealed at different temp.(Ta=RT, 473, 573, 673) K on the electrical conductivity and hall effect measurements of AgInTe2thin film have and been investigated AgAlxIn(1-x) Te2 (AAIT) at RT, using thermal evaporation technique all the films were prepared on glass substrates from the alloy of the compound. Electrical conductivity (σ), the activation energies (Ea1, Ea2), Hall mobility and the carrier concentration are investigated as a function of doping. All films consist of two types of transport mechanisms for free carriers. The activation energy (Ea) decreased whereas electrical conductivity increases with increased doping. Results of Hall Effect
... Show More